1
|
Chen K, Gu X, Cai M, Zhao W, Wang B, Yang H, Liu X, Li X. Emission characteristics, environmental impacts and health risk assessment of volatile organic compounds from the typical chemical industry in China. J Environ Sci (China) 2025; 149:113-125. [PMID: 39181627 DOI: 10.1016/j.jes.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 08/27/2024]
Abstract
To study the volatile organic compounds (VOCs) emission characteristics of industrial enterprises in China, 6 typical chemical industries in Yuncheng City were selected as research objects, including the modern coal chemical industry (MCC), pharmaceutical industry (PM), pesticide industry (PE), coking industry (CO) and organic chemical industry (OC). The chemical composition of 91 VOCs was quantitatively analyzed. The results showed that the emission concentration of VOCs in the chemical industry ranged from 1.16 to 155.59 mg/m3. Alkanes were the main emission components of MCC (62.0%), PE (55.1%), and OC (58.5%). Alkenes (46.5%) were important components of PM, followed by alkanes (23.8%) and oxygenated volatile organic compounds (OVOCs) (21.2%). Halocarbons (8.6%-71.1%), OVOCs (9.7%-37.6%) and alkanes (11.2%-27.0%) were characteristic components of CO. The largest contributor to OFP was alkenes (0.6%-81.7%), followed by alkanes (9.3%-45.9%), and the lowest one was alkyne (0%-0.5%). Aromatics (66.9%-85.4%) were the largest contributing components to SOA generation, followed by alkanes (2.6%-28.5%), and the lowest one was alkenes (0%-4.1%). Ethylene and BTEX were the key active species in various chemical industries. The human health risk assessment showed workers long-term exposed to the air in the chemical industrial zone had a high cancer and non-cancer risk during work, and BTEX and dichloromethane were the largest contributors.
Collapse
Affiliation(s)
- Kaitao Chen
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xin Gu
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Min Cai
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Weicheng Zhao
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Boxuan Wang
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Haoran Yang
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xingru Li
- Analysis and Testing Center, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
2
|
Gao M, Li X, Zhang Q, Li S, Wu S, Wang Y, Sun H. Spatial distribution of volatile organic compounds in contaminated soil and distinct microbial effect driven by aerobic and anaerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172256. [PMID: 38583613 DOI: 10.1016/j.scitotenv.2024.172256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.
Collapse
Affiliation(s)
- Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuelin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shanxing Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Gątarek P, Rosiak A, Kałużna-Czaplińska J. Chromatographic Methods for the Determination of Organic Pollution in Urban Water: A Current Mini Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38451912 DOI: 10.1080/10408347.2024.2318764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The number of pollutants and chemicals with the potential to reach the environment is still largely unknown, which poses great challenges for researchers in various fields of science, environmental scientists, and analytical chemists. Chromatographic techniques, both gas chromatography (GC) and liquid chromatography (LC) coupled with different types of detection, are now invaluable tools for the identification of a wide range of chemical compounds and contaminants in water. This review is devoted to chromatographic techniques GC-MS, GC-Orbitrap-MS, GC-MS/MS, GC-HRMS, GC × GC-TOFMS, GC-ECD, LC-MS/MS, HPLC-UV, HPLC-PDA, UPLC-QTOFMS, used to determinate emerging organic contaminants in aquatic media, mainly in urban water, published in the scientific literature over the past several years. The article also focuses on sample preparation methods used in the analysis of aqueous samples. Most research focuses on minimizing the number of sample preparation steps, reducing the amount of solvents used, the speed of analysis, and the ability to apply it to a wide range of analytes in a sample. This is extremely important in the application of sensitive and selective methods to monitor the status of urban water quality and assess its impact on human health.
Collapse
Affiliation(s)
- Paulina Gątarek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Angelina Rosiak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
4
|
Liang Z, Yu Y, Sun B, Yao Q, Lin X, Wang Y, Zhang J, Li Y, Wang X, Tang Z, Ma S. The underappreciated role of fugitive VOCs in ozone formation and health risk assessment emitted from seven typical industries in China. J Environ Sci (China) 2024; 136:647-657. [PMID: 37923473 DOI: 10.1016/j.jes.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 11/07/2023]
Abstract
Fugitive emission from industrial sources may result in ozone formation and health risk, while the exact contribution of this source remains incompletely understood. In this study, emission characteristics, ozone formation potential (OFP) and health risk of fugitive VOCs in 7 representative industries were investigated. Chemical material industry was the dominant contributor to VOCs of fugitive emission in comparison with other industries. The OFP of VOCs from fugitive emission was in the range of 1.45 × 103-3.98 × 105 µg/m3, with a higher value than that of organized emission in seven industries except for the coking industry and the chemical material industry, suggesting that fugitive VOCs should be taken into account while developing control strategies. Acetaldehyde, m,p-xylene, n-nonane, ethylene, vinyl chloridethe and other high OFP-contributing species were the major reactive species that should be targeted. Health risk assessment investigated non-cancer and cancer risks of fugitive VOCs in 7 industries were all above safe level (HR > 1 and LCR > 1 × 10-4), posing remarkable health threats to human health. OVOCs were the main contributor to non-cancer risk, while halohydrocarbons and aromatics contributed most to cancer risks, posing remarkable health threat on human health. Our findings highlighted the contribution of fugitive VOCs on ozone formation and health risk was underestimated, indicating which should be considered in emission control strategies of industrial sources.
Collapse
Affiliation(s)
- Zhiling Liang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Protection Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Bingbing Sun
- State Environmental Protection Key Laboratory of Environmental Protection Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Qian Yao
- State Environmental Protection Key Laboratory of Environmental Protection Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Xihua Lin
- State Environmental Protection Key Laboratory of Environmental Protection Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Yongsheng Wang
- State Environmental Protection Key Laboratory of Environmental Protection Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jianping Zhang
- Henan Jiyuan Ecological Environment Testing Center, Jiyuan 454650, China
| | - Yingzi Li
- Ecological Environment Bureau of Jiyuan Production City Integration Demonstration Zone, Jiyuan 454650, China
| | - Xuefeng Wang
- Ecological Environment Bureau of Jiyuan Production City Integration Demonstration Zone, Jiyuan 454650, China
| | - Zhengzheng Tang
- Ecological Environment Bureau of Jiyuan Production City Integration Demonstration Zone, Jiyuan 454650, China
| | - Shexia Ma
- State Environmental Protection Key Laboratory of Environmental Protection Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China.
| |
Collapse
|
5
|
Wang H, Yan Z, Zhang Z, Jiang K, Yu J, Yang Y, Yang B, Shu J, Yu Z, Wei Z. Real-time emission characteristics, health risks, and olfactory effects of VOCs released from soil disturbance during the remediation of an abandoned chemical pesticide industrial site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93617-93628. [PMID: 37516703 DOI: 10.1007/s11356-023-28942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Volatile organic compounds (VOCs) released along with soil disturbance during the remediation of abandoned industrial sites have attracted great attention due to their possible toxicity and odour. However, the real-time emission characteristics of these VOCs and their subsequent effects on health and olfaction are less understood. In this study, the gaseous VOCs released from soil disturbance by excavators and drilling rigs at an abandoned chemical pesticide plant were monitored online with a laboratory-built single photoionization time-of-flight mass spectrometer (SPI-TOFMS). Twelve main VOCs with total mean concentrations ranging from 2350 to 3410 μg m-3 were observed, with dichloromethane (DCM) having a significant contribution. The total concentrations of the remaining 11 VOCs increased substantially during soil disturbance, with the total mean concentrations increasing from 18.65-39.05 to 37.95-297.94 μg m-3 and those of peak concentrations increasing from 28.46-58.97 to 88.38-839.13 μg m-3. This increase in VOC concentrations during soil disturbance leads to an enhanced heath risk for on-site workers. The distinctive difference between the mean and peak concentrations of VOCs indicates the importance of using mean and peak concentrations, respectively, for risk and olfactory evaluation due to the rapid response of the human nose to odours. As a result, the cumulative noncarcinogenic risk at the relatively high pollutant plot was higher than the occupational safety limit, while the total carcinogenic risks at all monitored scenarios exceeded the acceptable limit. Among the VOCs investigated, DCM and trichloroethylene (TCE) were determined to be crucial pollutants for both noncarcinogenic and carcinogenic risks of VOCs. With regard to olfactory effects, organic sulphides, including dimethyl disulphide (DMDS), dimethyl sulphide (DMS), and dimethyl trisulphide (DMTS) were identified as dominant odour contributors (78.28-92.11%) during soil disturbance.
Collapse
Affiliation(s)
- Haijie Wang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zitao Yan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zuojian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Kui Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Jin Yu
- China State Science Dingshi Environmental Engineering Co., Ltd, Beijing, 100102, People's Republic of China
| | - Yong Yang
- China State Science Dingshi Environmental Engineering Co., Ltd, Beijing, 100102, People's Republic of China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China.
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zhangqi Yu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zhiyang Wei
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| |
Collapse
|
6
|
Ganiyu SA, Olobadola MO, Adeyemi AA. Concentrations and health risk appraisal of heavy metals and volatile organic compounds in soils of automobile mechanic villages in Ogun State, Nigeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6407-6433. [PMID: 37316652 DOI: 10.1007/s10653-023-01644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
This report presents the findings of the concentrations, distributions and health risks assessment of heavy metals (HMs) and volatile organic compounds (VOCs) in topsoils of two typical automobile mechanic villages (MVs) situated within Ogun State, Nigeria. One of the MVs is located in basement complex terrain (Abeokuta), while the second is in the sedimentary formation (Sagamu). Ten composite samples were collected at depth of 0-30 cm with the aid of soil auger from spent oil-contaminated spots within the two MVs. The chemical parameters of interest were Pb, Cd, benzene, ethylbenzene, toluene, total petroleum hydrocarbon (TPH) as well as oil and grease (O&G). In addition, soil pH, cation exchange capacity (CEC), electrical conductivity (EC) and particle size distribution were also evaluated in order to find out their impacts on assessed soil pollutants. Results revealed that the soils in both MVs are of sandy loam texture, slight acidic to neutral pH, mean CEC < 15 cmol/kg and mean EC > 100 μS/cm. The mean concentration of each of analyzed HMs and VOCs in soils from the two MVs was < 5 mg/kg, while the mean values of TPH and O&G content were > 50 mg/kg. The mean Cd values in soils of both MVs were higher than the national soil screening level of 0.8 mg/kg, but lower than the Canadian and Italian guidelines. There is no significant correlation between each of HMs/VOCs and any of assessed soil physicochemical variables. The non-cancer risk expressed in terms of hazard index (HI) was > 1 via oral ingestion route for adults and children at the two MVs, indicating adverse non-carcinogenic health risk. The HI > 1 value was obtained for adults only through the dermal absorption pathway in Abeokuta MV. However, HI values for the two age groups at the two MVs via inhalation route were < 1, indicating no likelihood of any non-carcinogenic effects via the breathing exposure. The potential of non-cancer risk via oral ingestion route in both MVs was derived from the contributive ratios of HMs and VOCs in the order: Cd > benzene > Pb > toluene. The carcinogenic risk (CR) values due to ingested Cd, benzene and Pb for both age groups at the two MVs exceed the safe limit range of 10-6 to 10-4. Cadmium, benzene and lead made considerable contributions to the estimation of CR through dermal exposure for adults only in Abeokuta MV. The CR values via inhalation pathway for adults and children in both MVs were within the threshold range. Artisans and children should circumvent accidental ingestion of contaminated soils in addition to wearing of protective clothes during routine vehicle maintenance activities.
Collapse
Affiliation(s)
- Saheed Adekunle Ganiyu
- Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
| | | | - Azeem Adedeji Adeyemi
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
7
|
Vikrant K, Kim KH, Dong F, Heynderickx PM, Boukhvalov DW. Low-temperature oxidative removal of gaseous formaldehyde by an eggshell waste supported silver-manganese dioxide bimetallic catalyst with ultralow noble metal content. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128857. [PMID: 35429758 DOI: 10.1016/j.jhazmat.2022.128857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Under dark/low temperature (DLT) conditions, the oxidative removal of gaseous formaldehyde (FA) was studied using eggshell waste supported silver (Ag)-manganese dioxide (MnO2) bimetallic catalysts. To assess the synergistic effects between the two different metals, 0.03%-Ag-(0.5-5%)-MnO2/Eggshell catalysts were prepared and employed for DLT-oxidation of FA. The steady-state FA oxidation reaction rate (mmol g-1 h-1), when measured using 100 ppm FA at 80 °C (gas hourly space velocity (GHSV) of 5308 h-1), varied as follows: Ag-1.5%-MnO2/Eggshell-R (9.4) > Ag-3%-MnO2/Eggshell-R (8.1) > Ag-1.5%-MnO2/Eggshell (7.5) > Ag-5%-MnO2/Eggshell-R (7.2) > Ag-1.5%-MnO2/CaCO3-R (6.8) > MnO2-R (6) > Ag-0.5%-MnO2/Eggshell-R (3.2) > Ag/Eggshell-R (2.6). (Here, 'R' denotes hydrogen-based thermochemical reduction pretreatment.) The temperature required for 90% FA conversion (T90) at the same GHSV exhibited a contrary ordering: Ag/Eggshell-R (175 °C) > Ag-0.5%-MnO2/Eggshell-R (123 °C) > Ag-5%-MnO2/Eggshell-R (113 °C) > MnO2-R (99 °C) > Ag-1.5%-MnO2/Eggshell (96 °C) > Ag-3%-MnO2/Eggshell-R (93 °C) > Ag-1.5%-MnO2/Eggshell-R (77 °C). The eggshell catalyst outperformed the ones made of commercial calcium carbonate due to the presence of defects in the former. The MnO2 co-catalyst enhances the catalytic activities through the capture and activation of atmospheric oxygen (O2) with rapid catalytic regeneration. Also, MnO2 favorably captures the hydrogen of the adsorbed FA molecules to make the oxidation pathway thermodynamically more favorable.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research (CEER), Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium.
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, Yekaterinburg 620002, Russia
| |
Collapse
|