1
|
Analogues of Anticancer Natural Products: Chiral Aspects. Int J Mol Sci 2023; 24:ijms24065679. [PMID: 36982753 PMCID: PMC10058835 DOI: 10.3390/ijms24065679] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Life is chiral, as its constituents consist, to a large degree, of optically active molecules, be they macromolecules (proteins, nucleic acids) or small biomolecules. Hence, these molecules interact disparately with different enantiomers of chiral compounds, creating a preference for a particular enantiomer. This chiral discrimination is of special importance in medicinal chemistry, since many pharmacologically active compounds are used as racemates—equimolar mixtures of two enantiomers. Each of these enantiomers may express different behaviour in terms of pharmacodynamics, pharmacokinetics, and toxicity. The application of only one enantiomer may improve the bioactivity of a drug, as well as reduce the incidence and intensity of adverse effects. This is of special significance regarding the structure of natural products since the great majority of these compounds contain one or several chiral centres. In the present survey, we discuss the impact of chirality on anticancer chemotherapy and highlight the recent developments in this area. Particular attention has been given to synthetic derivatives of drugs of natural origin, as naturally occurring compounds constitute a major pool of new pharmacological leads. Studies have been selected which report the differential activity of the enantiomers or the activities of a single enantiomer and the racemate.
Collapse
|
2
|
Bogaerts J, Aerts R, Vermeyen T, Johannessen C, Herrebout W, Batista JM. Tackling Stereochemistry in Drug Molecules with Vibrational Optical Activity. Pharmaceuticals (Basel) 2021; 14:877. [PMID: 34577577 PMCID: PMC8468215 DOI: 10.3390/ph14090877] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
Chirality plays a crucial role in drug discovery and development. As a result, a significant number of commercially available drugs are structurally dissymmetric and enantiomerically pure. The determination of the exact 3D structure of drug candidates is, consequently, of paramount importance for the pharmaceutical industry in different stages of the discovery pipeline. Traditionally the assignment of the absolute configuration of druggable molecules has been carried out by means of X-ray crystallography. Nevertheless, not all molecules are suitable for single-crystal growing. Additionally, valuable information about the conformational dynamics of drug candidates is lost in the solid state. As an alternative, vibrational optical activity (VOA) methods have emerged as powerful tools to assess the stereochemistry of drug molecules directly in solution. These methods include vibrational circular dichroism (VCD) and Raman optical activity (ROA). Despite their potential, VCD and ROA are still unheard of to many organic and medicinal chemists. Therefore, the present review aims at highlighting the recent use of VOA methods for the assignment of the absolute configuration of chiral small-molecule drugs, as well as for the structural analysis of biologics of pharmaceutical interest. A brief introduction on VCD and ROA theory and the best experimental practices for using these methods will be provided along with selected representative examples over the last five years. As VCD and ROA are commonly used in combination with quantum calculations, some guidelines will also be presented for the reliable simulation of chiroptical spectra. Special attention will be paid to the complementarity of VCD and ROA to unambiguously assess the stereochemical properties of pharmaceuticals.
Collapse
Affiliation(s)
- Jonathan Bogaerts
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Roy Aerts
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Tom Vermeyen
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
- Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Christian Johannessen
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Joao M. Batista
- Institute of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos 12231-280, SP, Brazil
| |
Collapse
|
3
|
Liu TT, Guo XM, Rong ZY, Ye XF, Wei JF, Wang AP, Jin HT. Comparative toxicity and toxicokinetic studies of oxiracetam and (S)-oxiracetam in dogs. Xenobiotica 2019; 49:1054-1062. [PMID: 30351213 DOI: 10.1080/00498254.2018.1528027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Oxiracetam (ORT) is known as a derivative of piracetam in the family of nootropics for treating memory impairment and cognition disorders. Given the chiral toxicological concerns surrounding ORT and the absence studies of (S)-ORT, the toxicity and toxicokinetics of (S)-ORT, and comparative toxicology of oxiracetam were systematically investigated in dogs following acute and 13-week repeated oral dosing. The animal toxicity mainly manifested as loose stools in both the acute and the 13-week studies. The no-observed-adverse-effect level is proposed to be 100 mg/kg. The 13-week toxicokinetics study indicated that, in the (S)-ORT group, the time to peak concentration was delayed, elimination half-life extended, and apparent volume of distribution increased compared with the ORT group. The clearance rate increased at low- and mid-doses, but decreased in the high-dose group and was accompanied by drug accumulation. Compared with the same dose of ORT, (S)-ORT had a lower clearance rate and longer elimination half-life.
Collapse
Affiliation(s)
- Tian-Tian Liu
- a New Drug Safety Evaluation Center, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xin-Miao Guo
- b Beijing Union-Genius Pharmaceutical Technology Co., LTD , Beijing , China
| | - Zu-Yuan Rong
- c Sichuan Institute for Food and Drug Control , Sichuan , China
| | - Xiang-Feng Ye
- b Beijing Union-Genius Pharmaceutical Technology Co., LTD , Beijing , China
| | - Jin-Feng Wei
- a New Drug Safety Evaluation Center, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China.,b Beijing Union-Genius Pharmaceutical Technology Co., LTD , Beijing , China
| | - Ai-Ping Wang
- a New Drug Safety Evaluation Center, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China.,b Beijing Union-Genius Pharmaceutical Technology Co., LTD , Beijing , China
| | - Hong-Tao Jin
- a New Drug Safety Evaluation Center, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China.,b Beijing Union-Genius Pharmaceutical Technology Co., LTD , Beijing , China
| |
Collapse
|
4
|
Ng I, Greenblatt HK, Greenblatt DJ. Stereo-Psychopharmacology: The Case of Citalopram and Escitalopram. Clin Pharmacol Drug Dev 2018; 5:331-5. [PMID: 27452501 DOI: 10.1002/cpdd.293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Isaac Ng
- Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
5
|
Kowalczyk D, Albrecht Ł. Enantioselective organocatalytic approach to δ-lactones bearing a fused cyclohexanone scaffold. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Zhong YJ, Guo D, Fan J, Ruan LJ, Gao RQ, Zhang WG. HPLC Enantioseparation of Menthol with Non-ultraviolet Detectors and Effect of Chromatographic Conditions. Chromatographia 2018. [DOI: 10.1007/s10337-018-3525-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Moczulski M, Drelich P, Albrecht Ł. Bifunctional catalysis in the stereocontrolled synthesis of tetrahydro-1,2-oxazines. Org Biomol Chem 2018; 16:376-379. [DOI: 10.1039/c7ob02894f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of bifunctional catalysis for the synthesis of tetrahydro-1,2-oxazines is described.
Collapse
Affiliation(s)
- Marek Moczulski
- Institute of Organic Chemistry
- Department of Chemistry
- Lodz University of Technology
- 90-924 Łódź
- Poland
| | - Piotr Drelich
- Institute of Organic Chemistry
- Department of Chemistry
- Lodz University of Technology
- 90-924 Łódź
- Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry
- Department of Chemistry
- Lodz University of Technology
- 90-924 Łódź
- Poland
| |
Collapse
|
8
|
The Impact of Pharmacokinetic Interactions With Eslicarbazepine Acetate Versus Oxcarbazepine and Carbamazepine in Clinical Practice. Ther Drug Monit 2017; 38:499-505. [PMID: 27414974 DOI: 10.1097/ftd.0000000000000306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Eslicarbazepine acetate (ESL) is a new anti-epileptic drug (AED) chemically related to oxcarbazepine (OXC) and carbamazepine (CBZ) and is increasingly used in clinical practice. The purpose of the study was to investigate 2-way pharmacokinetic interactions between ESL and other AEDs as compared to OXC and CBZ. METHODS Anonymous data regarding age, gender, use of AEDs, daily doses and serum concentration measurements of ESL, OXC, CBZ and lamotrigine (LTG) and other AEDs were retrieved from 2 therapeutic drug monitoring (TDM) databases in Norway. Drugs were categorized according to their known potential for interactions. Concentration/dose (C/D) ratios were calculated. RESULTS Data from 1100 patients were available. The C/D ratios of ESL and OXC were unchanged in combination with enzyme-inducing AEDs or valproate (VPA). The C/D ratio of CBZ decreased by 40% and 22% in combination with other enzyme-inducing AEDs or VPA, respectively, pointing to an increased clearance. ESL demonstrated no significant enzyme-inducing effect on LTG metabolism although there was a 20% and 34% decrease in the C/D ratio of LTG in combination with OXC and CBZ, respectively. CONCLUSIONS Possible pharmacokinetic interactions have been studied for ESL as compared to OXC and CBZ. The pharmacokinetics of ESL is not affected by enzyme-inducing AEDs or VPA and does not affect the metabolism of LTG in contrast to OXC and CBZ. The study demonstrates the value of using TDM databases to explore the potential for pharmacokinetic interactions of new AEDs.
Collapse
|
9
|
Gao RQ, Fan J, Tan Q, Guo D, Chen T, He RJ, Li D, Zhang H, Zhang WG. Reliable HPLC separation, vibrational circular dichroism spectra, and absolute configurations of isoborneol enantiomers. Chirality 2017; 29:550-557. [DOI: 10.1002/chir.22728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Rui-Qi Gao
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Jun Fan
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Qi Tan
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Dong Guo
- Guangdong YanJie Pharmatech Co. Ltd; Guangzhou China
| | - Tao Chen
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Ru-Jian He
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Dan Li
- School of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Wei-Guang Zhang
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| |
Collapse
|
10
|
Dubois VFS, Danhof M, Della Pasqua O. Characterizing QT interval prolongation in early clinical development: a case study with methadone. Pharmacol Res Perspect 2017; 5:e00284. [PMID: 28596836 PMCID: PMC5461648 DOI: 10.1002/prp2.284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022] Open
Abstract
Recently, we have shown how pharmacokinetic–pharmacodynamic (PKPD) modeling can be used to assess the probability of QT interval prolongation both in dogs and humans. A correlation between species has been identified for a drug‐specific parameter, making it possible to prospectively evaluate nonclinical signals. Here, we illustrate how nonclinical data on methadone can be used to support the evaluation of dromotropic drug effects in humans. ECG and drug concentration data from a safety pharmacology study in dogs were analyzed using nonlinear mixed effects modeling. The slope of the PKPD model describing the probability of QT interval prolongation was extrapolated from dogs to humans and subsequently combined with methadone pharmacokinetic data as input for clinical trial simulations. Concentration versus time profiles were simulated for doses between 5 and 500 mg. Predicted peak concentrations in humans were then used as reference value to assess the probability of an increase in QT interval of ≥5 and ≥10 ms. Point estimates for the slope in dogs suggested low probability of ≥10 ms prolongation in humans, whereas an effect of approximately 5 ms increase is predicted when accounting for the 90% credible intervals of the drug‐specific parameter in dogs. Interspecies differences in drug disposition appear to explain the discrepancies between predicted and observed QT prolonging effects in humans. Extrapolation of the effects of racemic compound may not be sufficient to describe the increase in QT interval observed after administration of methadone to patients. Assessment of the contribution of enantioselective metabolism and active metabolites is critical.
Collapse
Affiliation(s)
- Vincent F S Dubois
- Division of Pharmacology Leiden Academic Centre for Drug Research Leiden University Leidenthe Netherlands
| | - Meindert Danhof
- Division of Pharmacology Leiden Academic Centre for Drug Research Leiden University Leidenthe Netherlands
| | - Oscar Della Pasqua
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline Stockley Park Uxbridge United Kingdom.,Clinical Pharmacology & Therapeutics University College London London United Kingdom
| |
Collapse
|
11
|
Kowalczyk D, Albrecht Ł. Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. J Org Chem 2016; 81:6800-7. [DOI: 10.1021/acs.joc.6b00975] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dorota Kowalczyk
- Institute of Organic Chemistry,
Chemistry Department, Lodz University of Technology, Żeromskiego
116, 90-924 Łódź, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry,
Chemistry Department, Lodz University of Technology, Żeromskiego
116, 90-924 Łódź, Poland
| |
Collapse
|
12
|
Sjödin T, Nilner K, Sparre B, Bernet C, Åström M. A clinical and microbiological study on the enantiomers of delmopinol. Acta Odontol Scand 2016; 74:355-61. [PMID: 26940371 DOI: 10.3109/00016357.2016.1151546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective The clinical part of this study aimed to investigate whether the racemate of delmopinol [(±)-delmopinol] is equivalent to its two enantiomers [(+)-delmopinol and (-)-delmopinol] with respect to efficiency and to determine and compare their pharmacokinetic properties. The purpose of the pre-clinical part was to elucidate possible differences in antimicrobial efficiency. Materials and methods The compounds were tested clinically in a double-blind, randomized, cross-over study comprising three treatment periods of 4 days each. The antimicrobial efficacy of the enantiomers was compared in vitro with respect to planktonic and biofilm bacteria of different species. Results No statistically significant differences in prevention of plaque formation were observed. Except for a somewhat higher systemic exposure in terms of AUC and Cmax indicated for (-)-delmopinol compared to (+)-delmopinol, the pharmacokinetic properties were similar. The most common adverse event was a transient anaesthetic feeling in the mouth. This event was reported with the same frequency for all three test solutions. The enantiomers showed similar antimicrobial effects on planktonic bacteria and their biofilms. Conclusions The enantiomers were found to be equally effective with respect to inhibition of plaque development and only minor differences were observed with respect to their pharmacokinetic properties. No differences could be observed in the adverse events reports. There is, therefore, no reason to use one of the enantiomers of delmopinol instead of the racemate. This was further supported by the antimicrobial tests. It is suggested that the combined action of cationic and neutral delmopinol is important for its effect on biofilms.
Collapse
Affiliation(s)
- Torgny Sjödin
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Krister Nilner
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | | | | | |
Collapse
|
13
|
Guo L, Chen X, Li LN, Tang W, Pan YT, Kong JQ. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering. Microb Cell Fact 2016; 15:27. [PMID: 26846670 PMCID: PMC4743118 DOI: 10.1186/s12934-016-0424-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
Abstract
Background (2S)-Pinocembrin is a chiral flavanone with versatile pharmacological and biological activities. Its health-promoting effects have spurred on research effects on the microbial production of (2S)-pinocembrin. However, an often-overlooked salient feature in the analysis of microbial (2S)-pinocembrin is its chirality. Results Here, we presented a full characterization of absolute configuration of microbial (2S)-pinocembrin from engineered Escherichia coli. Specifically, a transcriptome-wide search for genes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum, a plant rich in flavonoids, was first performed in the present study. A total of 104,180 unigenes were finally generated with an average length of 520 bp. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping assigned 26 unigenes, representing three enzyme families of 4-coumarate:coenzyme A ligase (4CL), chalcone synthase (CHS) and chalcone isomerase(CHI), onto (2S)-pinocembrin biosynthetic pathway. A total of seven, three and one full-length candidates encoding 4CL, CHS and CHI were then verified by reverse transcription polymerase chain reaction, respectively. These candidates were screened by functional expression in E. coli individual or coupled multienzyme reaction systems based on metabolic engineering processes. Oc4CL1, OcCHS2 and OcCHI were identified to be bona fide genes encoding respective pathway enzymes of (2S)-pinocembrin biosynthesis. Then Oc4CL1, OcCHS2 and MsCHI from Medicago sativa, assembled as artificial gene clusters in different organizations, were used for fermentation production of (2S)-pinocembrin in E. coli. The absolute configuration of the resulting microbial pinocembrin at C-2 was assigned to be 2S-configured by combination of retention time, UV spectrum, LC–MS, NMR, optical rotation and circular dichroism spectroscopy. Improvement of (2S)-pinocembrin titres was then achieved by optimization of gene organizations, using of codon-optimized pathway enzymes and addition of cerulenin for increasing intracellular malonyl CoA pools. Overall, the optimized strain can produce (2S)-pinocembrin of 36.92 ± 4.1 mg/L. Conclusions High titre of (2S)-pinocembrin can be obtained from engineered E. coli by an efficient method. The fermentative production of microbial (2S)-pinocembrin in E. coli paved the way for yield improvement and further pharmacological testing. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0424-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| | - Xi Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China. .,School of Medicine of Wuhan University, Wuhan, China.
| | - Li-Na Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| | - Wei Tang
- School of Medicine of Wuhan University, Wuhan, China.
| | - Yi-Ting Pan
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| |
Collapse
|
14
|
Wang W, Wang L, Wu X, Xu L, Meng Q, Liu W. Stereoselective Formation and Metabolism of 20(S)-Protopanaxadiol Ocotillol Type Epimers in Vivo and in Vitro. Chirality 2014; 27:170-6. [DOI: 10.1002/chir.22407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/15/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Wenyan Wang
- School of Pharmacy; Yantai University; Yantai China
| | - Li Wang
- School of Pharmacy; Yantai University; Yantai China
| | - Xiangmeng Wu
- School of Pharmacy; Yantai University; Yantai China
| | - Lixiao Xu
- School of Pharmacy; Yantai University; Yantai China
| | - Qingguo Meng
- School of Pharmacy; Yantai University; Yantai China
| | - Wanhui Liu
- School of Pharmacy; Yantai University; Yantai China
| |
Collapse
|
15
|
Taşdemir D, Karaküçük-İyidoğan A, Ulaşli M, Taşkin-Tok T, Oruç-Emre EE, Bayram H. Synthesis, Molecular Modeling, and Biological Evaluation of Novel Chiral Thiosemicarbazone Derivatives as Potent Anticancer Agents. Chirality 2014; 27:177-88. [DOI: 10.1002/chir.22408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Demet Taşdemir
- Gaziantep University; Faculty of Science and Arts, Department of Chemistry; Gaziantep Turkey
| | | | - Mustafa Ulaşli
- Gaziantep University; Faculty of Medicine, Department of Medical Biology; Sehitkamil Gaziantep Turkey
| | - Tuğba Taşkin-Tok
- Gaziantep University; Faculty of Science and Arts, Department of Chemistry; Gaziantep Turkey
| | - Emİne Elçİn Oruç-Emre
- Gaziantep University; Faculty of Science and Arts, Department of Chemistry; Gaziantep Turkey
| | - Hasan Bayram
- Gaziantep University; Faculty of Medicine, Department of Pulmonary Diseases; Sehitkamil Gaziantep Turkey
| |
Collapse
|
16
|
Stereoselective property of 20(S)-protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P-glycoprotein. PLoS One 2014; 9:e98887. [PMID: 24887182 PMCID: PMC4041784 DOI: 10.1371/journal.pone.0098887] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Stereoselectivity has been proved to be tightly related to drug action including pharmacodynamics and pharmacokinetics. (20S,24R)-epoxy-dammarane-3,12,25-triol (24R-epimer) and (20S,24S)-epoxy-dammarane-3,12,25-triol (24S-epimer), a pair of 20(S)-protopanaxadiol (PPD) ocotillol type epimers, were the main metabolites of PPD. Previous studies have shown that 24R-epimer and 24S-epimer had stereoselectivity in pharmacological action and pharmacokinetics. In the present study, the aim was to further study the pharmacokinetic characteristics of both epimers, investigate their absorption mechanism and analyze the selectivity effects of ocotillol type side chain and C24 stereo-configuration on P-glycoprotein (P-gp) in vivo and in vitro. Results showed that the absolute bioavailability of 24R-epimer was about 14-fold higher than that of 24S-epimer, and a linear kinetic characteristic was acquired in doses of 5-20 mg/kg for both epimers after oral administration. Furthermore, the apparent permeability coefficients of 24R-epimer were 5-7 folds higher than that of 24S-epimer having lower efflux ratios in Caco-2 cell models. Moreover, both 24R-epimer and 24S-epimer had similar inhibitory effects on P-gp by increasing cellular retention of rhodamine 123 in Caco-2 cells and decreasing efflux of digoxin across Caco-2 cell monolayers. In situ in vivo experiments showed that the inhibition of 24R-epimer on P-gp was stronger than that of 24S-epimer by single-pass intestinal perfusion of rhodamine 123 in rats. Western blot analyses demonstrated that both epimers had no action on P-gp expression in Caco-2 cells. In conclusion, with respect to the stereoselectivity, C24 S-configuration of the ocotillol type epimers processed a poor transmembrane permeability and could be distinguished by P-gp. Sharing a dammarane skeleton, both 24R-epimer and 24S-epimer were potent inhibitors of P-gp. This study provides a new case of stereoselective pharmacokinetics of chiral compounds which contributes to know the chiral characteristics of P-gp and structure-action relationship of PPD type and ocotillol type ginsenosides as a P-gp inhibitor.
Collapse
|
17
|
Huber KVM, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth AS, Gokturk C, Sanjiv K, Strömberg K, Pham T, Berglund UW, Colinge J, Bennett KL, Loizou J, Helleday T, Knapp S, Superti-Furga G. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 2014; 508:222-7. [PMID: 24695225 PMCID: PMC4150021 DOI: 10.1038/nature13194] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 03/04/2014] [Indexed: 12/21/2022]
Abstract
Activated RAS GTPase signalling is a critical driver of oncogenic transformation and malignant disease. Cellular models of RAS-dependent cancers have been used to identify experimental small molecules, such as SCH51344, but their molecular mechanism of action remains generally unknown. Here, using a chemical proteomic approach, we identify the target of SCH51344 as the human mutT homologue MTH1 (also known as NUDT1), a nucleotide pool sanitizing enzyme. Loss-of-function of MTH1 impaired growth of KRAS tumour cells, whereas MTH1 overexpression mitigated sensitivity towards SCH51344. Searching for more drug-like inhibitors, we identified the kinase inhibitor crizotinib as a nanomolar suppressor of MTH1 activity. Surprisingly, the clinically used (R)-enantiomer of the drug was inactive, whereas the (S)-enantiomer selectively inhibited MTH1 catalytic activity. Enzymatic assays, chemical proteomic profiling, kinome-wide activity surveys and MTH1 co-crystal structures of both enantiomers provide a rationale for this remarkable stereospecificity. Disruption of nucleotide pool homeostasis via MTH1 inhibition by (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models. Our results propose (S)-crizotinib as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 in general as a promising novel class of anticancer agents.
Collapse
Affiliation(s)
- Kilian V. M. Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Eidarus Salah
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Branka Radic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Manuela Gridling
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jonathan M. Elkins
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Gokturk
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kia Strömberg
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Therese Pham
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Joanna Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
18
|
Shekar R, Sinha BN, Mukhopadhya A, Degani MS. Isolation and evaluation of the enantiospecific antitubercular activity of a novel triazole compound. Sci Pharm 2013; 82:87-97. [PMID: 24634844 PMCID: PMC3951235 DOI: 10.3797/scipharm.1308-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/21/2013] [Indexed: 11/22/2022] Open
Abstract
Cyclohex-3-enyl(5-phenyl-4H-1,2,4-triazol-3-yl)methanol (MSDRT 12) is a novel triazole-based antitubercular compound with two chiral centers. To evaluate the enantiospecific antitubercular activity, the four stereoisomers were isolated using preparative chiral chromatography and the individual stereoisomers were evaluated using the resazurin microtiter assay method (REMA) and a microbroth dilution technique against the Mycobacterium tuberculosis H37Rv strain. Isomer III of MSDRT 12 was found to be the most potent with a minimum inhibitory concentration (MIC) of 0.78 μg/mL, Isomer II had a MIC of 12.5 μg/mL, and isomers I and IV showed no activity. The diastereomeric mixture of MSDRT 12 showed a MIC of 3.125 μg/mL and isoniazid, used as the standard drug, showed a MIC of 0.4 μg/mL. This confirms the necessity of screening individual enantiomers for their pharmacological activity early in the discovery phase to identify the most potent isomer for further development efforts.
Collapse
|
19
|
Abstract
Many molecules can exist as right-handed and left-handed forms that are non-superimposable mirror images of each other. They are known as enantiomers or substances of opposite shape. Such compounds are also said to be chiral (Greek chiros meaning ‘hand’). Such chiral molecules are of great relevance to anaesthetic theory and practice. This review summarizes the basic concepts, pharmacokinetic and pharmacodynamic aspects of chirality, and some specific examples of their application in anaesthesia, along with recent advances to elucidate the anaesthetic mechanisms. Chirality is relevant to anaesthesia, simply because more than half of the synthetic agents used in anaesthesia practice are chiral drugs. Almost all these synthetic chiral drugs are administered as racemic mixture, rather than as single pure enantiomers. These mixtures are not drug formulations containing two or more therapeutic substances, but combination of isomeric substances, with the therapeutic activity residing mainly in one of the enantiomer. The other enantiomer can have undesirable properties, have different therapeutic activities or be pharmacologically inert. Specific examples of application of chirality in anaesthetic drugs include inhalational general anaesthetics (e.g. isoflurane), intravenous anaesthetics (e.g. etomidate, thiopentone), neuromuscular blocking agents (e.g. cisatracurium), local anaesthetics (e.g. ropivacaine and levobupivacaine) and other agents (e.g. levosimendan, dexmedetomidine, L-cysteine). In the recent advances, chirality study has not only helped new drug development as mentioned above, but has also contributed in a more profound way to the understanding of the mechanism of anaesthesia and anaesthetic drugs.
Collapse
Affiliation(s)
- Sukanya Mitra
- Departments of Anaesthesia and Intensive Care, Government Medical College and Hospital, Chandigarh, India
| | | |
Collapse
|
20
|
Sayre CL, Takemoto JK, Martinez SE, Davies NM. Chiral analytical method development and application to pre-clinical pharmacokinetics of pinocembrin. Biomed Chromatogr 2012; 27:681-4. [DOI: 10.1002/bmc.2853] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Casey L. Sayre
- Faculty of Pharmacy; University of Manitoba; Winnipeg; Manitoba; Canada; R3E 0T5
| | - Jody K. Takemoto
- John A. Burns School of Medicine, Department of Cell and Molecular Biology; University of Hawaii; Honolulu; HI 96813; USA
| | | | - Neal M. Davies
- Faculty of Pharmacy; University of Manitoba; Winnipeg; Manitoba; Canada; R3E 0T5
| |
Collapse
|
21
|
Advantages of electronic circular dichroism detection for the stereochemical analysis and characterization of drugs and natural products by liquid chromatography. J Chromatogr A 2012; 1269:69-81. [PMID: 23040981 DOI: 10.1016/j.chroma.2012.09.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/10/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022]
Abstract
The need for analytical methods for the determination of the enantiomeric excess of chiral compounds increased significantly in the last decades, and enantioselective separation techniques resulted particularly efficient to this purpose. Moreover, when detection systems based on chiroptical properties (optical rotation or circular dichroism) are employed in high-performance liquid chromatography (HPLC), the stereochemistry of a chiral analyte can be fully determined. Indeed, the coupling of HPLC with chiroptical detection systems allows the simultaneous assessment of the absolute configuration of stereoisomers and the evaluation of the enantiomeric/diastereomeric excess of samples. These features are particularly important in the study of drugs and natural products provided with biological activity, because the assignment of their absolute stereochemistry is essential to establish reliable structure-activity relationships. The following review aims to discuss the analytical advantages arising from the employment of electronic circular dichroism (ECD) detection systems in stereochemical analysis by HPLC upon chiral and non-chiral stationary phases and their use for the stereochemical characterization of chiral drugs and natural compounds. The different methods for the correlation between absolute stereochemistry and chiroptical properties are critically discussed. Relevant HPLC applications of ECD detection systems are then reported, and their analytical advantages are highlighted. For instance, the importance of the concentration-independent anisotropy factor (g-factor; g=Δɛ/ɛ) for the determination of the stereoisomeric composition of samples upon non-chiral stationary phases is underlined, since its sensitivity makes ECD detection very well suited for the enantioselective analysis of large libraries of chiral compounds in relatively short times.
Collapse
|
22
|
Sayre CL, Hopkins M, Takemoto JK, Davies NM. Chiral analytical method development of liquiritigenin with application to a pharmacokinetic study. Biomed Chromatogr 2012; 27:404-6. [PMID: 22815238 DOI: 10.1002/bmc.2787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/01/2012] [Accepted: 06/25/2012] [Indexed: 12/20/2022]
Abstract
Pharmacometric characterization studies of liquiritigenin have historically overlooked its chiral nature. To achieve complete characterization, an analytical method enabling the detection and quantification of the individual enantiomers of racemic (±) liquiritigenin is necessary. Resolution of the enantiomers of liquiritigenin was achieved using a simple high-performance liquid chromatographic method. A Chiralpak® ADRH column was employed to perform baseline separation with UV detection at 210 nm.The standard curves were linear ranging from 0.5 to 100 µg/mL for each enantiomer. Limit of quantification was 0.5 µg/mL. The assay was applied successfully to stereoselective serum disposition of liquiritigenin enantiomers in rats. Liquiritigenin enantiomers were detected in serum as both aglycones and glucuronidated conjugates. Both unconjugated enantiomers had a serum half-life of ~15 min in rats. The volume of distribution (V(d) ) for S- and R-liquiritigenin was 1.49 and 2.21 L/kg, respectively. Total clearance (Cl(total) ) was 5.12 L/h/kg for S-liquiritigenin and 4.79 L/h/kg for R-liquiritigenin, and area under the curve (AUC(0-inf) ) was 3.95 µg h/mL for S-liquiritigenin and 4.23 µg h/mL for R-liquiritigenin. The large volume of distribution coupled with the short serum half-life suggests extensive distribution of liquiritigenin into tissues.
Collapse
Affiliation(s)
- Casey L Sayre
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada, R3E 0T5
| | | | | | | |
Collapse
|
23
|
Chemodiversity and molecular plasticity: recognition processes as explored by property spaces. Future Med Chem 2011; 3:995-1010. [PMID: 21707401 DOI: 10.4155/fmc.11.54] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the last few years, a need to account for molecular flexibility in drug-design methodologies has emerged, even if the dynamic behavior of molecular properties is seldom made explicit. For a flexible molecule, it is indeed possible to compute different values for a given conformation-dependent property and the ensemble of such values defines a property space that can be used to describe its molecular variability; a most representative case is the lipophilicity space. In this review, a number of applications of lipophilicity space and other property spaces are presented, showing that this concept can be fruitfully exploited: to investigate the constraints exerted by media of different levels of structural organization, to examine processes of molecular recognition and binding at an atomic level, to derive informative descriptors to be included in quantitative structure--activity relationships and to analyze protein simulations extracting the relevant information. Much molecular information is neglected in the descriptors used by medicinal chemists, while the concept of property space can fill this gap by accounting for the often-disregarded dynamic behavior of both small ligands and biomacromolecules. Property space also introduces some innovative concepts such as molecular sensitivity and plasticity, which appear best suited to explore the ability of a molecule to adapt itself to the environment variously modulating its property and conformational profiles. Globally, such concepts can enhance our understanding of biological phenomena providing fruitful descriptors in drug-design and pharmaceutical sciences.
Collapse
|
24
|
Kingbäck M, Karlsson L, Zackrisson AL, Carlsson B, Josefsson M, Bengtsson F, Ahlner J, Kugelberg FC. Influence of CYP2D6 genotype on the disposition of the enantiomers of venlafaxine and its major metabolites in postmortem femoral blood. Forensic Sci Int 2011; 214:124-34. [PMID: 21840145 DOI: 10.1016/j.forsciint.2011.07.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/05/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022]
Abstract
Venlafaxine (VEN) is an antidepressant drug mainly metabolized by the cytochrome P450 (CYP) enzyme CYP2D6 to the active metabolite O-desmethylvenlafaxine (ODV). VEN is also metabolized to N-desmetylvenlafaxine (NDV) via CYP3A4. ODV and NDV are further metabolized to N,O-didesmethylvenlafaxine (DDV). VEN is a racemic mixture of the S- and R-enantiomers and these have in vitro displayed different degrees of serotonin and noradrenaline reuptake inhibition. The aim of the study was to investigate if an enantioselective analysis of VEN and its metabolites, in combination with genotyping for CYP2D6, could assist in the interpretation of forensic toxicological results in cases with different causes of deaths. Concentrations of the enantiomers of VEN and metabolites were determined in femoral blood obtained from 56 autopsy cases with different causes of death. The drug analysis was done by liquid chromatography tandem mass spectrometry (LC/MS/MS) and the CYP2D6 genotyping by PCR and pyrosequencing. The mean (median) enantiomeric S/R ratios of VEN, ODV, NDV and DDV were 0.99 (0.91), 2.17 (0.93), 0.92 (0.86) and 1.08 (1.03), respectively. However, a substantial variation in the relationship between the S- and R-enantiomers of VEN and metabolites was evident (S/R ratios ranging from 0.23 to 17.6). In six cases, a low S/R VEN ratio (mean 0.5) was associated with a high S/R ODV ratio (mean 11.9). Genotyping showed that these individuals carried two inactive CYP2D6 genes indicating a poor metabolizer phenotype. From these data we conclude that enantioselective analysis of VEN and ODV can predict if a person is a poor metabolizer genotype/phenotype for CYP2D6. Knowledge of the relationship between the S- and R-enantiomers of this antidepressant drug and its active metabolite is also important since the enantiomers display different pharmacodynamic profiles.
Collapse
Affiliation(s)
- Maria Kingbäck
- Division of Drug Research, Clinical Pharmacology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Stereoselective determination of venlafaxine and its three demethylated metabolites in human plasma and whole blood by liquid chromatography with electrospray tandem mass spectrometric detection and solid phase extraction. J Pharm Biomed Anal 2010; 53:583-90. [DOI: 10.1016/j.jpba.2010.03.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 11/18/2022]
|
26
|
Kasprzyk-Hordern B. Pharmacologically active compounds in the environment and their chirality. Chem Soc Rev 2010; 39:4466-503. [PMID: 20852776 DOI: 10.1039/c000408c] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pharmacologically active compounds including both legally used pharmaceuticals and illicit drugs are potent environmental contaminants. Extensive research has been undertaken over the recent years to understand their environmental fate and toxicity. The one very important phenomenon that has been overlooked by environmental researchers studying the fate of pharmacologically active compounds in the environment is their chirality. Chiral drugs can exist in the form of enantiomers, which have similar physicochemical properties but differ in their biological properties such as distribution, metabolism and excretion, as these processes (due to stereospecific interactions of enantiomers with biological systems) usually favour one enantiomer over the other. Additionally, due to different pharmacological activity, enantiomers of chiral drugs can differ in toxicity. Furthermore, degradation of chiral drugs during wastewater treatment and in the environment can be stereoselective and can lead to chiral products of varied toxicity. The distribution of different enantiomers of the same chiral drug in the aquatic environment and biota can also be stereoselective. Biological processes can lead to stereoselective enrichment or depletion of the enantiomeric composition of chiral drugs. As a result the very same drug might reveal different activity and toxicity and this will depend on its origin and exposure to several factors governing its fate in the environment. In this critical review a discussion of the importance of chirality of pharmacologically active compounds in the environmental context is undertaken and suggestions for directions in further research are made. Several groups of chiral drugs of major environmental relevance are discussed and their pharmacological action and disposition in the body is also outlined as it is a key factor in developing a full understanding of their environmental occurrence, fate and toxicity. This review will be of interest to environmental scientists, especially those interested in issues associated with environmental contamination with pharmacologically active compounds and chiral pollutants. As the review will outline current state of knowledge on chiral drugs, it will be of value to anyone interested in the phenomenon of chirality, chiral drugs, their stereoselective disposition in the body and environmental fate (212 references).
Collapse
Affiliation(s)
- Barbara Kasprzyk-Hordern
- University of Huddersfield, Department of Chemical and Biological Sciences, School of Applied Sciences, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
27
|
Tamura M, Shiba S, Kudo N, Kawashima Y. Pharmacokinetics of nateglinide enantiomers and their metabolites in Goto-Kakizaki rats, a model for type 2 diabetes mellitus. Chirality 2010; 22:92-8. [DOI: 10.1002/chir.20711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Tanikawa T, Fridman M, Zhu W, Faulk B, Joseph IC, Kahne D, Wagner BK, Clemons PA. Using biological performance similarity to inform disaccharide library design. J Am Chem Soc 2009; 131:5075-83. [PMID: 19298063 DOI: 10.1021/ja806583y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing better small-molecule discovery libraries requires having methods to assess the consequences of different synthesis decisions on the biological performance of resulting library members. Since we are particularly interested in how stereochemistry affects performance in biological assays, we prepared a disaccharide library containing systematic stereochemical variations, assayed the library for different biological effects, and developed methods to assess the similarity of performance between members across multiple assays. These methods allow us to ask which subsets of stereochemical features best predict similarity in patterns of biological performance between individual members and which features produce the greatest variation of outcomes. We anticipate that the data-analysis approach presented here can be generalized to other sets of biological assays and other chemical descriptors. Methods to assess which structural features of library members produce the greatest similarity in performance for a given set of biological assays should help prioritize synthesis decisions in second-generation library development targeting the underlying cell-biological processes. Methods to assess which structural features of library members produce the greatest variation in performance should help guide decisions about what synthetic methods need to be developed to make optimal small-molecule screening collections.
Collapse
Affiliation(s)
- Tetsuya Tanikawa
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Youard ZA, Mislin GLA, Majcherczyk PA, Schalk IJ, Reimmann C. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 2007; 282:35546-53. [PMID: 17938167 DOI: 10.1074/jbc.m707039200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The siderophore pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation whereas the second cysteine remains in its L-configuration, thus determining the stereochemistry of the two interconvertible pyochelin diastereoisomers as 4'R, 2''R, 4''R (pyochelin I) and 4'R, 2''S, 4''R (pyochelin II). Pseudomonas fluorescens CHA0 was found to make a different stereoisomeric mixture, which promoted growth under iron limitation in strain CHA0 and induced the expression of its biosynthetic genes, but was not recognized as a siderophore and signaling molecule by P. aeruginosa. Reciprocally, pyochelin promoted growth and induced pyochelin gene expression in P. aeruginosa, but was not functional in P. fluorescens. The structure of the CHA0 siderophore was determined by mass spectrometry, thin-layer chromatography, NMR, polarimetry, and chiral HPLC as enantio-pyochelin, the optical antipode of the P. aeruginosa siderophore pyochelin. Enantio-pyochelin was chemically synthesized and confirmed to be active in CHA0. Its potential biosynthetic pathway in CHA0 is discussed.
Collapse
Affiliation(s)
- Zeb A Youard
- Département de Microbiologie Fondamentale, Université de Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, CH-1015 Lausanne, Suisse
| | | | | | | | | |
Collapse
|