1
|
Wannasuphoprasit Y, Andersen SE, Arranz MJ, Catalan R, Jurgens G, Kloosterboer SM, Rasmussen HB, Bhat A, Irizar H, Koller D, Polimanti R, Wang B, Zartaloudi E, Austin-Zimmerman I, Bramon E. CYP2D6 Genetic Variation and Antipsychotic-Induced Weight Gain: A Systematic Review and Meta-Analysis. Front Psychol 2022; 12:768748. [PMID: 35185676 PMCID: PMC8850377 DOI: 10.3389/fpsyg.2021.768748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antipsychotic-induced weight gain is a contributing factor in the reduced life expectancy reported amongst people with psychotic disorders. CYP2D6 is a liver enzyme involved in the metabolism of many commonly used antipsychotic medications. We investigated if CYP2D6 genetic variation influenced weight or BMI among people taking antipsychotic treatment. METHODS We conducted a systematic review and a random effects meta-analysis of publications in Pubmed, Embase, PsychInfo, and CENTRAAL that had BMI and/or weight measurements of patients on long-term antipsychotics by their CYP2D6-defined metabolic groups (poor, intermediate, normal/extensive, and ultra-rapid metabolizers, UMs). RESULTS Twelve studies were included in the systematic review. All cohort studies suggested that the presence of reduced-function or non-functional alleles for CYP2D6 was associated with greater antipsychotic-induced weight gain, whereas most cross-sectional studies did not find any significant associations. Seventeen studies were included in the meta-analysis with clinical data of 2,041 patients, including 93 poor metabolizers (PMs), 633 intermediate metabolizers (IMs), 1,272 normal metabolizers (NMs), and 30 UMs. Overall, we did not find associations in any of the comparisons made. The estimated pooled standardized differences for the following comparisons were (i) PM versus NM; weight = -0.07 (95%CI: -0.49 to 0.35, p = 0.74), BMI = 0.40 (95%CI: -0.19 to 0.99, p = 0.19). (ii) IM versus NM; weight = 0.09 (95% CI: -0.04 to 0.22, p = 0.16) and BMI = 0.09 (95% CI: -0.24 to 0.41, p = 0.60). (iii) UM versus EM; weight = 0.01 (95% CI: -0.37 to 0.40, p = 0.94) and BMI = -0.08 (95%CI: -0.57 to 0.42, p = 0.77). CONCLUSION Our systematic review of cohort studies suggested that CYP2D6 poor metabolizers have higher BMI than normal metabolizers, but the data of cross-sectional studies and the meta-analysis did not show this association. Although our review and meta-analysis constitutes one of the largest studies with comprehensively genotyped samples, the literature is still limited by small numbers of participants with genetic variants resulting in poor or UMs status. We need further studies with larger numbers of extreme metabolizers to establish its clinical utility in antipsychotic treatment. CYP2D6 is a key gene for personalized prescribing in mental health.
Collapse
Affiliation(s)
| | | | - Maria J Arranz
- Fundació Docència I Recerca, Mútua Terrassa, Barcelona, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Rosa Catalan
- Barcelona Clinic Schizophrenia Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- CIBERSAM, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Gesche Jurgens
- Clinical Pharmacological Unit, Zealand University Hospital, Roskilde, Denmark
| | - Sanne Maartje Kloosterboer
- Department of Hospital Pharmacy and Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans, Roskilde, Denmark
- Department of Science and Environment, Roskilde University Center, Roskilde, Denmark
| | - Anjali Bhat
- Division of Psychiatry, University College London, London, United Kingdom
| | - Haritz Irizar
- Division of Psychiatry, University College London, London, United Kingdom
| | - Dora Koller
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Baihan Wang
- Division of Psychiatry, University College London, London, United Kingdom
| | - Eirini Zartaloudi
- Division of Psychiatry, University College London, London, United Kingdom
| | - Isabelle Austin-Zimmerman
- Division of Psychiatry, University College London, London, United Kingdom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, United Kingdom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Camden and Islington NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
2
|
Zastrozhin MS, Skryabin VY, Torrado M, Petrovna A, Sorokin AS, Grishina EA, Ryzhikova KA, Bedina IA, Buzik OZ, Chumakov EM, Savchenko LM, Brun EA, Sychev DA. Effects of CYP2C19*2 polymorphisms on the efficacy and safety of phenazepam in patients with anxiety disorder and comorbid alcohol use disorder. Pharmacogenomics 2020; 21:111-123. [PMID: 31957548 DOI: 10.2217/pgs-2019-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction: Phenazepam therapy can often be ineffective and some patients develop dose-related adverse drug reactions. Aim. The purpose of this research was to study the effect of the CYP2C19*2 (681G>A, rs4244285) in patients with anxiety disorders and alcohol dependence taking phenazepam therapy. Materials & methods: Patients (175 males, average age: 37.16 ± 7.84 years) received phenazepam in tablet form for 5 days. Genotyping was performed by real-time polymerase chain reaction. Results: The statistically significant differences in the UKU Side-Effect Rating Scale scores on the fifth day of therapy: (CYP2C19*1/*1) 2.00 [1.00; 2.00), (CYP2C19*1/*2) 7.00 (7.00; 7.00), (CYP2C19*2/*2) 9.00 (8.00; 9.00), p < 0.001. Conclusion: This study demonstrated the different efficacy and safety of phenazepam in patients with different genotypes of CYP2C19*2.
Collapse
Affiliation(s)
- Michael S Zastrozhin
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Valentin Y Skryabin
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Marco Torrado
- University of Lisbon, Faculty of Medicine, ISAMB (Instituto de Saúde Ambiental) venida Professor Egas Moniz (Edifício comum ao Hospital de Santa Maria), 1649-028 Lisboa, Portugal
| | - Anastasiya Petrovna
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Alexander S Sorokin
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Elena A Grishina
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Kristina A Ryzhikova
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Inessa A Bedina
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Oleg Z Buzik
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Egor M Chumakov
- Saint-Petersburg State University, Department of Psychiatry & Addictions, Saint-Petersburg, Russian Federation.,Saint-Petersburg Psychiatric Hospital No. 1 named after PP Kaschenko, Day In-Patient Department, Saint-Petersburg, Russian Federation
| | - Ludmila M Savchenko
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Evgeny A Brun
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Dmitry A Sychev
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| |
Collapse
|
3
|
Wang L, Bai M, Jin T, Zheng J, Wang Y, He Y, Yuan D, He X. Effects of CYP3A4 Polymorphisms on Drug Addiction Risk Among the Chinese Han Population. Front Public Health 2019; 7:315. [PMID: 31799230 PMCID: PMC6878905 DOI: 10.3389/fpubh.2019.00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022] Open
Abstract
Background:Cytochrome P450 3A4 (CYP3A4) regulates pharmacokinetic and pharmacodynamic interactions during the process of drug absorption and metabolism, suggesting CYP3A4 plays an important role in drug addiction. However, the association between CYP3A4 polymorphisms and drug addiction risk is still not clear. Methods: This case-control study included 504 drug addicts and 501 healthy controls from Xi'an, China. Four single nucleotide polymorphisms (SNP) in CYP3A4 (rs3735451, rs4646440, rs35564277, and rs4646437) were genotyped by Agena MassARRAY platform. After adjusting by age and gender, we calculated odd ratios (OR) and 95% confidence intervals (CI) by logistic regression to estimate the association between CYP3A4 polymorphisms and drug addiction risk. Results: We found rs4646440 and rs4646437 were associated with decreased risk of drug addiction in codominant (rs4646440: OR = 0.41, 95%CI = 0.19–0.92, p = 0.030; rs4646437: OR = 0.19, 95%CI = 0.04–0.87, p = 0.032) and recessive (rs4646440: OR = 0.41, 95%CI = 0.19–0.91, p = 0.028; rs4646437: OR = 0.20, 95%CI = 0.04–0.90, p = 0.036) models. Rs3735451 and rs4646437 were associated with drug addiction risk in the subgroup of middle-aged people (44 < age ≤ 59) and elderly people (age ≥ 60), individually. For men, rs3735451, rs4646440, and rs4646437 had strong relationship with decreased risk of drug addiction (p < 0.05). The effects of rs3735451 on drug addiction risk were related to drug-using time (p < 0.05). We also observed one block (rs4646440 and rs35564277) in haplotype analysis. Conclusion:CYP3A4 polymorphisms were associated with drug addiction risk among the Chinese Han population.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,School of Basic Medical Sciences, Xizang Minzu University, Xianyang, China
| | - Mei Bai
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,School of Basic Medical Sciences, Xizang Minzu University, Xianyang, China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,School of Basic Medical Sciences, Xizang Minzu University, Xianyang, China
| | - Jianwen Zheng
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Department of Neurology, Affiliated Hospital of Xizang Minzu University, Xianyang, China
| | - Yuhe Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Department of Clinical Laboratory, Affiliated Hospital of Xizang Minzu University, Xianyang, China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,School of Basic Medical Sciences, Xizang Minzu University, Xianyang, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,School of Basic Medical Sciences, Xizang Minzu University, Xianyang, China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,School of Basic Medical Sciences, Xizang Minzu University, Xianyang, China
| |
Collapse
|
4
|
Zastrozhin MS, Skryabin VY, Smirnov VV, Grishina EA, Ryzhikova KA, Chumakov EM, Bryun EA, Sychev DA. Effects of CYP2D6 activity on the efficacy and safety of mirtazapine in patients with depressive disorders and comorbid alcohol use disorder. Can J Physiol Pharmacol 2019; 97:781-785. [PMID: 31100205 DOI: 10.1139/cjpp-2019-0177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of the study was to investigate the effects of CYP2D6 activity on the efficacy and safety of mirtazapine in patients with depressive disorders and comorbid alcohol use disorder who received mirtazapine. The study included 109 Russian patients who received mirtazapine at a dose of 30.0 [15.0; 45.0] mg per day. Genotyping of CYP2D6*4 (1846G > A, rs3892097) was performed using real-time polymerase chain reaction with allele-specific hybridization. The activity of CYP2D6 was evaluated by determining the concentration of endogenous substrate of the enzyme and its urinary metabolite - pinoline to 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline ratio, using high-performance liquid chromatography - mass spectrometry. The statistically significant differences between the scores on the Hamilton Depression Rating Scale (HAMD) in patients with different genotypes were revealed by day 16: (GG) 5.0 [3.0; 6.0], (GA) 1.5 [1.0; 3.2] (p < 0.001), and for the The UKU Side Effects Rating Scale (UKU): (GG) 6.0 [6.0; 7.0], (GA) 8.5 [8.0; 10.0] (p < 0.001). The calculation of correlation coefficients between the differences in scale scores and metabolic rate showed the presence of statistically significant weak inverse correlation with the efficacy indicator evaluated by HAMD (r = -0.278, p < 0.05), but not by UKU (r = 0.274, p > 0.05). This study demonstrated that an increased CYP2D6 activity reduces the efficacy of treatment with mirtazapine.
Collapse
Affiliation(s)
- M S Zastrozhin
- a Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Moscow 109390, Russia.,b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| | - V Y Skryabin
- a Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Moscow 109390, Russia
| | - V V Smirnov
- c NRC Institute of Immunology FMBA of Russia, Moscow 115478, Russia.,d I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
| | - E A Grishina
- b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| | - K A Ryzhikova
- b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| | - E M Chumakov
- e Department of Psychiatry and Addictions, Saint-Petersburg State University, 13B Universitetskaya Emb., Saint-Petersburg 199034, Russia.,f Day In-patient Department, Saint-Petersburg Psychiatric Hospital No. 1 named after P.P. Kashchenko, Saint-Petersburg 190121, Russia
| | - E A Bryun
- a Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Moscow 109390, Russia.,b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| | - D A Sychev
- b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| |
Collapse
|