1
|
Quirié A, Mor D, Méloux A, Etievant A, Garnier P, Totoson P, Wirtz J, Prigent-Tessier A, Marie C, Demougeot C. Anxio-depressive phenotype and impaired memory in mice with a conditional knockout of brain-derived neurotrophic factor in endothelial cells. Am J Physiol Cell Physiol 2025; 328:C303-C314. [PMID: 39652745 DOI: 10.1152/ajpcell.00699.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The present study investigated the role of endothelial brain-derived neurotrophic factor (BDNF) in cognition. Male adult mice with a selective knockout of BDNF in endothelial cells (BDNFECKO) and their wild-type (WT) littermates were subjected to tests for detection of anxiety- and depression-like behaviors and impaired recognition memory. Neuronal activity and synaptogenesis were assessed from hippocampal levels of c-fos and synaptophysin, respectively, and cerebral capillary density from forebrain levels of CD31. BDNF/TrkB (tropomyosin-related kinase type B) receptor signaling was investigated through hippocampal levels of BDNF and activated TrkB receptors coupled with their immunolabeling by neurons and endothelial cells from both cerebrovascular fractions enriched in capillaries and hippocampal arterioles. Endothelial nitric oxide (NO) production was assessed from the expression of endothelial NO synthase phosphorylated at serine 1177. BDNFECKO mice exhibited anxio-depressive phenotype, impaired memory, and reduced synaptogenesis. Neither neuronal activity, neuronal BDNF/TrkB signaling, nor capillary density differed between BDNFECKO and WT mice. However, endothelial-activated TrkB receptors as well as endothelial NO production and hippocampal BDNF levels were lower in BDNFECKO than those in WT mice. We conclude that endothelial BDNF is involved in cognition through mechanisms independent of neuronal BDNF/TrkB signaling and that endothelial NO might be a driver of the procognitive effect of endothelial BDNF.NEW & NOTEWORTHY The study provides the proof of concept that endothelial brain-derived neurotrophic factor (BDNF) plays a crucial role in postnatal synaptogenesis and development of behavior/memory. It also shows that neuronal tropomyosin-related kinase type B (TrkB) receptors are not a target of endothelium-derived BDNF.
Collapse
Affiliation(s)
- Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Damien Mor
- UMR INSERM 1322 LINC, Université de Franche-Comté, Besançon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Adeline Etievant
- UMR INSERM 1322 LINC, Université de Franche-Comté, Besançon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Perle Totoson
- EFS, INSERM, UMR 1098 RIGHT, Université de Franche-Comté, Besançon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Christine Marie
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR Sciences de Santé, Dijon, France
| | - Céline Demougeot
- EFS, INSERM, UMR 1098 RIGHT, Université de Franche-Comté, Besançon, France
| |
Collapse
|
2
|
Kim CY, Ko K, Choi SH, Jo M, Kim J, Yoon S, Yi IJ, Morán-Valero MI, Kwon MY, Sohn J, Yi SS. Effects of Saffron Extract (Affron ®) with 100 mg/kg and 200 mg/kg on Hypothalamic-Pituitary-Adrenal Axis and Stress Resilience in Chronic Mild Stress-Induced Depression in Wistar Rats. Nutrients 2023; 15:4855. [PMID: 38068714 PMCID: PMC10707924 DOI: 10.3390/nu15234855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Stress-related symptoms are a global concern, impacting millions of individuals, yet effective and safe treatments remain scarce. Although multiple studies have highlighted the stress- alleviating properties of saffron extract, the underlying mechanisms remain unclear. This study employs the unpredictable chronic mild stress (CMS) animal model to investigate the impact of a standardized saffron extract, Affron® (AFN), on hypothalamic-pituitary-adrenal (HPA) axis regulation and neuroplasticity in Wistar rats following repeated oral administration. The research evaluates AFN's effects on various stress-related parameters, including hypothalamic gene expression, stress hormone levels, and the sucrose preference test. In animals subjected to continuous unpredictable CMS, repetitive administration of AFN at doses of 100 mg/kg and 200 mg/kg effectively normalized HPA axis dysregulation and enhanced neuroplasticity. Increased concentrations of AFN demonstrated greater efficacy. Following AFN oral administration, adrenocorticotropic and corticosterone hormone levels exhibited significant or nearly significant reductions in comparison to subjects exposed to stress only. These changes align with the alleviation of stress and the normalization of the HPA axis. These findings elucidate AFN's role in stress mitigation, affirm its health benefits, validate its potential as a treatment for stress-related symptoms, confirm its physiological effectiveness, and emphasize its therapeutic promise.
Collapse
Affiliation(s)
- Chae-Young Kim
- BK21 Four Program, Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Kayoung Ko
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea; (K.K.); (S.-H.C.); (M.J.)
| | - Seo-Hee Choi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea; (K.K.); (S.-H.C.); (M.J.)
| | - Miri Jo
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea; (K.K.); (S.-H.C.); (M.J.)
| | - Jinhye Kim
- Central Lab., iCONNECTOME Co., Ltd., Cheonan 31168, Republic of Korea; (J.K.); (S.Y.)
| | - Sunmi Yoon
- Central Lab., iCONNECTOME Co., Ltd., Cheonan 31168, Republic of Korea; (J.K.); (S.Y.)
| | - Isaac Jinwon Yi
- Department of Cognitive Science, University of California, San Diego, CA 92093, USA;
| | | | - Min-Young Kwon
- Hyundai Bioland Co., Ltd., Ansan 15407, Republic of Korea; (M.-Y.K.); (J.S.)
| | - Johann Sohn
- Hyundai Bioland Co., Ltd., Ansan 15407, Republic of Korea; (M.-Y.K.); (J.S.)
| | - Sun-Shin Yi
- BK21 Four Program, Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea;
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea; (K.K.); (S.-H.C.); (M.J.)
- Central Lab., iCONNECTOME Co., Ltd., Cheonan 31168, Republic of Korea; (J.K.); (S.Y.)
| |
Collapse
|
3
|
Tsai PH, Wu PC, Li HR, Senthil Kumar KJ, Wang SY. Hirami lemon ( Citrus reticulata var. depressa) modulates the gut-brain axis in a chronic mild stress-induced depression mouse model. Food Funct 2023; 14:7535-7549. [PMID: 37526032 DOI: 10.1039/d3fo01301d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Citrus reticulata var. depressa, commonly known as Hirami lemon, is a native citrus species found in Taiwan and Okinawa islands of Japan. While several Citrus species are known to possess antidepressant activity by modulating the gut microbiota, the antidepressant effect of Hirami lemon and its underlying mechanisms have not been thoroughly investigated. In this study, we explored the potential antidepressant efficacy of the fruit extract (CD) and the essential oil (CDE) from Hirami lemon peel using a chronic mild stress (CMS)-induced mouse model and analyzed the association of gut microbiome changes. Our findings revealed that mice subjected to CMS exhibited anxiety- and depression-like behaviors as assessed by elevated plus-maze and forced swimming tests, respectively. Significantly, oral administration of CDE and CD notably reversed CMS-induced depression- and anxiety-like behaviors in CMS-induced mice. Moreover, compared to the non-stressed group, CMS significantly altered the gut microbiome, characterized by highly diverse bacterial communities, reduced Bacteroidetes, and increased Firmicutes. However, oral administration of CDE and CD restored gut microbiota dysbiosis. We also performed a qualitative analysis of CD and CDE using UPLC-MS and GC-MS, respectively. The CD contained 25 compounds, of which 3 were polymethoxy flavones and flavanones. Three major compounds, nobiletin, tangeretin and hesperidin, accounted for 56.88% of the total relative peak area. In contrast, the CDE contained 11 terpenoids, of which 8 were identified as major compounds, with D-limonene (45.71%) being the most abundant, followed by γ-terpinene (34.65%), linalool (6.46%), p-cymene (2.57%), α-terpineol (2.04%), α-pinene (1.89%), α-terpinolene (1.46%), and β-pinene (1.16%), accounting for 95.94% of the total oil. In conclusion, our study demonstrated the potential of Hirami lemon as a source of natural antidepressant agents for the prevention and treatment of major depressive disorders.
Collapse
Affiliation(s)
- Po-Heng Tsai
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan and Academia Sinica, Taipei, Taiwan.
| | - Pei-Chen Wu
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Ru Li
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan and Academia Sinica, Taipei, Taiwan.
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Correia AS, Cardoso A, Vale N. BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics 2023; 15:2081. [PMID: 37631295 PMCID: PMC10457827 DOI: 10.3390/pharmaceutics15082081] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a significant role in the survival and development of neurons, being involved in several diseases such as Alzheimer's disease and major depression disorder. The association between BDNF and major depressive disorder is the subject of extensive research. Indeed, numerous studies indicate that decreased levels of BDNF are linked to an increased occurrence of depressive symptoms, neuronal loss, and cortical atrophy. Moreover, it has been observed that antidepressive therapy can help restore BDNF levels. In this review, we will focus on the role of BDNF in major depression disorder serotonergic imbalance and associated stress conditions, particularly hypothalamic-pituitary-adrenal (HPA) axis dysregulation and oxidative stress. All of these features are highly connected to BDNF signaling pathways in the context of this disease, and exploring this topic will aim to advance our understanding of the disorder, improve diagnostic and treatment approaches, and potentially identify new therapeutic targets to alleviate the heavy burden of depression on society.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Silva AO, Ribeiro JM, Patrocínio TB, Amorim GE, Pereira-Júnior AA, Ângelo ML, de Araújo Paula FB, de Mello Silva Oliveira N, Ruginsk SG, Antunes-Rodrigues J, Elias LLK, Dias MVS, Torres LH, Ceron CS. Protective Effects of Kefir Against Unpredictable Chronic Stress Alterations in Mice Central Nervous System, Heart, and Kidney. Probiotics Antimicrob Proteins 2023; 15:411-423. [PMID: 36534210 DOI: 10.1007/s12602-022-10031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Kefir is a probiotic mixture with anxiolytic and antioxidant properties. Chronic stress can lead to anxiety disorders and increase oxidative damage in organs such as the heart and kidney. In this study, we examined whether kefir ameliorates the anxiety-like behavior of mice submitted to chronic unpredictable stress (CUS) by modulating brain-derived neurotrophic factor (BDNF) and corticosterone levels and whether kefir modifies the oxidative parameters in the heart and kidney of mice. Male Swiss mice received kefir (0.3 mL/100 g/day) or milk for 30 days (gavage). On the 10th day, the mice were submitted to CUS. Behavioral analysis was performed using the elevated plus maze and forced swimming tests. BDNF levels were analyzed in brain tissues. Heart and kidney superoxide dismutase (SOD), catalase, glutathione (GSH), thiobarbituric acid reactive substances (TBARS), 3-nitrotyrosine, metalloproteinase-2 (MMP-2), and plasma corticosterone were evaluated. Kefir reverted the CUS-induced decrease in the time spent in the open arms, the increase in grooming frequency, and decrease in the head dipping frequency, but not the reduced immobility time. CUS decreased the cerebellum BDNF levels and increased corticosterone levels, which were restored by Kefir. Neither catalase and SOD activities nor GSH, TBARS, 3-nitrotyrosine, and MMP-2 were modified by CUS in the heart. In the kidney, CUS increased 3-nitrotyrosine and MMP-2. Kefir increased the antioxidant defense in the heart and kidney of control and CUS mice. These results suggest that kefir ameliorated CUS-induced anxiety-like behavior by modulating brain BDNF and corticosterone levels. Kefir also increased the antioxidant defense of mice heart and kidney.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Carla Speroni Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Diogo de Vasconcelos, 122, 35400-000l, Ouro Preto, MG, Brazil.
| |
Collapse
|
6
|
Zhang Y, Sun Y, Liu Y, Liu J, Sun J, Bai Y, Fan B, Lu C, Wang F. Polygonum sibiricum polysaccharides alleviate chronic unpredictable mild stress-induced depressive-like behaviors by regulating the gut microbiota composition and SCFAs levels. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|