1
|
Salimi-Kenari H, Barari M, Nabavi SR, Mousavi Anjeh A, Hosseini SR. Step by Step Modification of Electrospinning Process to Fabricate Ultra-Fine Dextran Nanofibers. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hamed Salimi-Kenari
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar Iran
| | - Mehdi Barari
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar Iran
| | - Seyed Reza Nabavi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar Iran
| | - Atefeh Mousavi Anjeh
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar Iran
| | - Sayed Reza Hosseini
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar Iran
| |
Collapse
|
2
|
Lee JW, Song KH. Fibrous hydrogels by electrospinning: Novel platforms for biomedical applications. J Tissue Eng 2023; 14:20417314231191881. [PMID: 37581121 PMCID: PMC10423451 DOI: 10.1177/20417314231191881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023] Open
Abstract
Hydrogels, hydrophilic and biocompatible polymeric networks, have been used for numerous biomedical applications because they have exhibited abilities to mimic features of extracellular matrix (ECM). In particular, the hydrogels engineered with electrospinning techniques have shown great performances in biomedical applications. Electrospinning techniques are to generate polymeric micro/nanofibers that can mimic geometries of natural ECM by drawing micro/nanofibers from polymer precursors with electrical forces, followed by structural stabilization of them. By exploiting the electrospinning techniques, the fibrous hydrogels have been fabricated and utilized as 2D/3D cell culture platforms, implantable scaffolds, and wound dressings. In addition, some hydrogels that respond to external stimuli have been used to develop biosensors. For comprehensive understanding, this review covers electrospinning processes, hydrogel precursors used for electrospinning, characteristics of fibrous hydrogels and specific biomedical applications of electrospun fibrous hydrogels and highlight their potential to promote use in biomedical applications.
Collapse
Affiliation(s)
- Ji Woo Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
3
|
Shahzadi L, Ramzan A, Anjum A, Jabbar F, Khan AF, Manzoor F, Shahzad SA, Chaudhry AA, Rehman IU, Yar M. An efficient new method for electrospinning chitosan and heparin for the preparation of pro‐angiogenic nanofibrous membranes for wound healing applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Amna Ramzan
- Centre of Excellence in Molecular Biology (CEMB) University of the Punjab Lahore Pakistan
| | - Awais Anjum
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Faiza Jabbar
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Faisal Manzoor
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry COMSATS University Islamabad, Abbottabad Campus Abbottabad Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | | | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| |
Collapse
|
4
|
Omer S, Forgách L, Zelkó R, Sebe I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics 2021; 13:286. [PMID: 33671624 PMCID: PMC7927019 DOI: 10.3390/pharmaceutics13020286] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, the electrospinning (ES) process has been extensively studied due to its potential applications in various fields, particularly pharmaceutical and biomedical purposes. The production rate using typical ES technology is usually around 0.01-1 g/h, which is lower than pharmaceutical industry production requirements. Therefore, different companies have worked to develop electrospinning equipment, technological solutions, and electrospun materials into large-scale production. Different approaches have been explored to scale-up the production mainly by increasing the nanofiber jet through multiple needles, free-surface technologies, and hybrid methods that use an additional energy source. Among them, needleless and centrifugal methods have gained the most attention and applications. Besides, the production rate reached (450 g/h in some cases) makes these methods feasible in the pharmaceutical industry. The present study overviews and compares the most recent ES approaches successfully developed for nanofibers' large-scale production and accompanying challenges with some examples of applied approaches in drug delivery systems. Besides, various types of commercial products and devices released to the markets have been mentioned.
Collapse
Affiliation(s)
- Safaa Omer
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, 1092 Budapest, Hungary;
| | - László Forgách
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary;
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, 1092 Budapest, Hungary;
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, 1092 Budapest, Hungary;
| |
Collapse
|
5
|
Garkal A, Kulkarni D, Musale S, Mehta T, Giram P. Electrospinning nanofiber technology: a multifaceted paradigm in biomedical applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj04159b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the process of preparation of nanofibers via Es, the design and setup of the instrument, critical parameter optimization, preferable polymers, solvents, characterization techniques, and recent development and biomedical applications of nanofibers.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra, 431136, India
| | - Shubham Musale
- Department of Pharmaceutics, Dr D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri-Pune, Maharashtra, 411018, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Prabhanjan Giram
- Department of Pharmaceutics, Dr D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri-Pune, Maharashtra, 411018, India
| |
Collapse
|
6
|
Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr Polym 2020; 247:116705. [PMID: 32829833 DOI: 10.1016/j.carbpol.2020.116705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/29/2022]
Abstract
Electrospinning has garnered significant attention in view of its many advantages such as feasibility for various polymers, scalability required for mass production, and ease of processing. Extensive studies have been devoted to the use of electrospinning to fabricate various electrospun nanofibers derived from carbohydrate gum polymers in combination with synthetic polymers and/or additives of inorganic or organic materials with gums. In view of the versatility and the widespread choice of precursors that can be deployed for electrospinning, various gums from both, the plants and microbial-based gum carbohydrates are holistically and/or partially included in the electrospinning solution for the preparation of functional composite nanofibers. Moreover, our strategy encompasses a combination of natural gums with other polymers/inorganic or nanoparticles to ensue distinct properties. This early established milestone in functional carbohydrate gum polymer-based composite nanofibers may be deployed by specialized researchers in the field of nanoscience and technology, and especially for exploiting electrospinning of natural gums composites for diverse applications.
Collapse
|
7
|
A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications. Processes (Basel) 2020. [DOI: 10.3390/pr8060673] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Electrospinning (ES) is a convenient and versatile method for the fabrication of nanofibers and has been utilized in many fields including pharmaceutical and biomedical applications. Conventional ES uses a needle spinneret for the generation of nanofibers and is associated with many limitations and drawbacks (i.e., needle clogging, limited production capacity, and low yield). Needleless electrospinning (NLES) has been proposed to overcome these problems. Within the last two decades (2004–2020), many research articles have been published reporting the use of NLES for the fabrication of polymeric nanofibers intended for drug delivery and biomedical tissue engineering applications. The objective of the present mini-review article is to elucidate the potential of NLES for designing such novel nanofibrous drug delivery systems and tissue engineering constructs. This paper also gives an overview of the key NLES approaches, including the most recently introduced NLES method: ultrasound-enhanced electrospinning (USES). The technologies underlying NLES systems and an evaluation of electrospun nanofibers are presented. Even though NLES is a promising approach for the industrial production of nanofibers, it is a multivariate process, and more research work is needed to elucidate its full potential and limitations.
Collapse
|
8
|
A Novel Profiled Multi-Pin Electrospinning System for Nanofiber Production and Encapsulation of Nanoparticles into Nanofibers. Sci Rep 2020; 10:4302. [PMID: 32152364 PMCID: PMC7062762 DOI: 10.1038/s41598-020-60752-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/17/2020] [Indexed: 11/25/2022] Open
Abstract
Electrospinning with various machine configurations is being used to produce polymer nanofibers with different rates of output. The use of polymers with high viscosity and the encapsulation of nanoparticles for achieving functionalities are some of the limitations of the existing methods. A profiled multi-pin electrospinning (PMES) setup is demonstrated in this work that overcomes the limitations in the needle and needleless electrospinning like needle clogging, particle settling, and uncontrolled/uneven Taylor cone formation, the requirement of very high voltage and uncontrolled distribution of nanoparticles in nanofibers. The key feature of the current setup is the use of profiled pin arrangement that aids in the formation of spherical shape polymer droplet and hence ensures uniform Taylor cone formation throughout the fiber production process. With a 10 wt% of Polyvinyl Alcohol (PVA) polymer solution and at an applied voltage of 30 kV, the production rate was observed as 1.690 g/h and average fiber diameter obtained was 160.5 ± 48.9 nm for PVA and 124.9 ± 49.8 nm for Cellulose acetate (CA) respectively. Moreover, the setup also provides the added advantage of using high viscosity polymer solutions in electrospinning. This approach is expected to increase the range of multifunctional electrospun nanofiber applications.
Collapse
|
9
|
Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.06.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Yarandpour M, Rashidi A, khajavi R, Eslahi N, Yazdanshenas M. Mesoporous PAA/dextran-polyaniline core-shell nanofibers: Optimization of producing conditions, characterization and heavy metal adsorptions. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Zhang Y, Zhang L, Cheng L, Qin Y, Li Y, Yang W, Li H. Efficient preparation of polymer nanofibers by needle roller electrospinning with low threshold voltage. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanping Zhang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Liyan Zhang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Lisheng Cheng
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Yongxin Qin
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Yi Li
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Weimin Yang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Organic‐Inorganic CompositeBeijing University of Chemical Technology Beijing 100029 China
| | - Haoyi Li
- College of Mechanical and Electrical EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
12
|
Niu H, Zhou H, Yan G, Wang H, Fu S, Zhao X, Shao H, Lin T. Enhancement of Coil Electrospinning Using Two-Level Coil Structure. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haitao Niu
- Institute for Frontier Materials, Deakin University, Victoria 3216, Australia
| | - Hua Zhou
- Institute for Frontier Materials, Deakin University, Victoria 3216, Australia
| | - Guilong Yan
- Institute for Frontier Materials, Deakin University, Victoria 3216, Australia
| | - Hongxia Wang
- Institute for Frontier Materials, Deakin University, Victoria 3216, Australia
| | - Sida Fu
- Institute for Frontier Materials, Deakin University, Victoria 3216, Australia
| | - Xueting Zhao
- Institute for Frontier Materials, Deakin University, Victoria 3216, Australia
| | - Hao Shao
- Institute for Frontier Materials, Deakin University, Victoria 3216, Australia
| | - Tong Lin
- Institute for Frontier Materials, Deakin University, Victoria 3216, Australia
| |
Collapse
|
13
|
Thongchaivetcharat K, Jenjob R, Crespy D. Encapsulation and Release of Functional Nanodroplets Entrapped in Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704527. [PMID: 29665317 DOI: 10.1002/smll.201704527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/06/2018] [Indexed: 06/08/2023]
Abstract
A method is presented for preserving the structural integrity of nanodroplets produced by emulsification. Droplets of different hydrophobic liquids such as essential oils or monomers are produced by the miniemulsion process. The miniemulsions are then electrospun to yield dextran nanofibers entrapping the hydrophobic nanodroplets. The nanodroplets are then successfully redispersed by dissolving the nanofibers in water. Furthermore, it is shown that nanofibers can be used to store a monomer and a catalyst as healing agents for ring-opening metathesis polymerization. After dissolution, the healing agents are released and a self-healing reaction takes place. Embedding, storage, and release of emulsion nanodroplets is a promising method that avoids potential destabilization of droplets by coalescence or Ostwald ripening.
Collapse
Affiliation(s)
- Kusuma Thongchaivetcharat
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Ratchapol Jenjob
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| |
Collapse
|
14
|
Ibuprofen and acetylsalicylic acid loaded electrospun PVP-dextran nanofiber mats for biomedical applications. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1897-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|