1
|
Kreitczick J, Schmohl L, Hahnel S, Vejjasilpa K, Schulz-Siegmund M, Koenig A. Aging processes in dental thermoplastics - Thermoanalytical investigations and effects on Vickers as well as Martens hardness. J Mech Behav Biomed Mater 2024; 154:106501. [PMID: 38531182 DOI: 10.1016/j.jmbbm.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE The influence of various aging protocols, representing and accelerating influences present in the dental context, on possible changes in the microstructure and mechanical properties of thermoplastics was investigated. In order to minimize the complexity of the systems, first pure polymers and then later the equivalent dental polymeric materials were analyzed. MATERIALS AND METHODS Pure polymers (Poly(methyl methacrylate) - PMMA, Polyoxymethylene homopolymer - POM-H, Polyether ether ketone - PEEK, Nylon 12 - PA12, Polypropylene - PP) were analyzed before as well as after applying different aging protocols relevant to the oral environment (ethanol, thermocycling, alkaline and acidic setting) by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The thermoanalytical parameters used were glass transition temperature (Tg), melting peak and crystallization peak temperature (Tpm, Tpc) and decomposition behavior. In a second step selected commercially available dental products (Telio CAD - PMMAD, Zirlux Acetal - POMD, Juvora Natural Dental Disc - PEEKD) aged by the protocol that previously showed strong effects were examined and additionally tested for changes in their Vickers and Martens hardness by Mann-Whitney-U test. RESULTS The combinations of pure polymers and viable aging protocols analyzed within this study were identified via TGA or DSC as PA12 & thermocycling, POM-H & denture cleanser/lactic acid/ethanol, PP & lactic acid. The dental polymeric materials PMMAD and POMD due to aging in lactic acid showed slight but significantly (p < 0.01) reduced Vickers and partly Martens hardness. PEEK showed the greatest material resistance within this study.
Collapse
Affiliation(s)
- Julia Kreitczick
- Department of Dental Prosthetics and Materials Science, Leipzig University, Liebigstraße 12, 04103, Leipzig, Germany
| | - Leonie Schmohl
- Department of Dental Prosthetics and Materials Science, Leipzig University, Liebigstraße 12, 04103, Leipzig, Germany.
| | - Sebastian Hahnel
- Department of Prosthetic Dentistry, UKR University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Ketpat Vejjasilpa
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, 04317, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, 04317, Leipzig, Germany
| | - Andreas Koenig
- Department of Dental Prosthetics and Materials Science, Leipzig University, Liebigstraße 12, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Lin X, Lin M, Li T, Lu H, Qi H, Chen T, Wu L, Zhang C. Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration. Polymers (Basel) 2023; 15:3365. [PMID: 37631422 PMCID: PMC10459721 DOI: 10.3390/polym15163365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Particulate matter (PM) and airborne viruses pose significant threats to both the environment and public health. As the most viable solution to prevent the inhalation of these pollutants, there is an urgent demand for face masks with excellent filtration efficiency and low-pressure drop. In this study, a crimped masterbatch (CM) is added to polypropylene feedstocks to produce curling fibers through melt-blown spinning. These curled fibers exhibit low filtration resistance and effective dust-holding performances when used for air filtration. The effect of adding CM on fiber diameter, pore size, crimp, porosity, roughness, and surface potential was studied. The filtration performance of the materials, including the PM filtration capabilities, recirculation filtration, and loading test performance, were also investigated. The results demonstrate that the degree of fiber crimp can be adjusted by incorporating varying amounts of CM. This curling was caused by the uneven shrinkage that occurred due to variations in thermal contraction between these polymers. The curled fibers created a fluffy structure in the fiber network and modified the distribution of pore sizes within it. Under the same filtration conditions as sodium chloride aerogel, CM-2 (PP:CM 8:2) exhibited similar filtration efficiency (95.54% vs. 94.74%), lower filtration resistance (88.68 Pa vs. 108.88 Pa), higher quality factor (0.035 Pa-1 vs. 0.028 Pa-1) and better dust holding capacity (10.39 g/m2 vs. 9.20 g/m2) compared to CM-0 (PP:CM 10:0). After 30 days of indoor storage, the filtration efficiency of CM-2 remained above 94%. The self-curling melt-blown filtration material developed here could potentially be applied in the field of protective masks.
Collapse
Affiliation(s)
- Xiaofang Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.L.); (T.C.); (L.W.)
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
| | - Minggang Lin
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
| | - Tan Li
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
| | - Hao Lu
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
| | - Huan Qi
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
- Key Laboratory of Clothing Materials of Universities in Fujian, Quanzhou Normal University, Quanzhou 362002, China
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| | - Ting Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.L.); (T.C.); (L.W.)
| | - Lili Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (X.L.); (T.C.); (L.W.)
| | - Chuyang Zhang
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (T.L.); (H.L.)
- Key Laboratory of Clothing Materials of Universities in Fujian, Quanzhou Normal University, Quanzhou 362002, China
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| |
Collapse
|
3
|
Mu X, Yang L, Shen Y, Ning Z, Jiang N, Li Z, Gan Z. Distinct degradation behaviors of semi-crystalline poly (4-hydroxybutyrate) containing a nucleating agent under enzymatic or alkaline conditions. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Li J, Yang C, Liu N, He S, Sun T, Zhang J. A ternary hybrid nucleating agent for isotropic polypropylene: Preparation, characterization, and application. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A ternary hybrid nucleating agent (THNA) powder was prepared by co-spray drying the fluid mixture of Si-MP/SNa slurry. The THNA was characterized by Fourier transform infrared and thermogravimetric analyses; the results showed that THNA was prepared successfully. The results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that THNA was ring-shaped or mushroom cap-shaped and it was uniformly dispersed in the iPP matrix. With the incorporation of THNA (0.2 wt%), the crystallization peak temperature of iPP/THNA increased effectively. The nucleation efficiency and crystallinity were improved to 69% and 58%, respectively. Moreover, the flexural strength, flexural modulus, tensile strength, and impact toughness of iPP/THAN were enhanced to 49.3 MPa, 1,988 MPa, 42 MPa, and 4.93 kJ·m−2, respectively. The transparency was increased to 77.7%, and the haze was reduced to 14.1%. The compound of sodium laurate and inorganic silica/aromatic phosphate had an obvious synergistic effect.
Collapse
Affiliation(s)
- Juan Li
- Technology Research and Development Center, National Engineering Research Center for Compounding and Modification of Polymer Materials , Guiyang 550014 , China
| | - Chunping Yang
- Material and Chemical Engineering Research Department, Guizhou Academy of Testing and Analysis , Guiyang 550014 , China
| | - Nan Liu
- Quality Inspection Department, China National Tobacco Quality Supervision and Test Centre , Zhengzhou , 450001 , China
| | - Shengbao He
- Quality Inspection Department, China National Tobacco Quality Supervision and Test Centre , Zhengzhou , 450001 , China
| | - Tianwei Sun
- Technology Research and Development Center, National Engineering Research Center for Compounding and Modification of Polymer Materials , Guiyang 550014 , China
| | - Jing Zhang
- Technology Research and Development Center, National Engineering Research Center for Compounding and Modification of Polymer Materials , Guiyang 550014 , China
| |
Collapse
|
5
|
Shokrollahi M, Marouf BT, Bagheri R. Role of the nucleating agent masterbatch carrier resin in the nonisothermal crystallization kinetics of polypropylene. Polym J 2022. [DOI: 10.1038/s41428-022-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Crystalline property change of poly(ethylene‐co‐vinyl acetate) by compounding and curing procedures. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
The Application of Organic Phosphate Nucleating Agents in Polypropylene with Different Molecular Weights. CRYSTALS 2021. [DOI: 10.3390/cryst11121543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two kinds of organic phosphate nucleating agent (NA-11 and NA-21) were used in PP with different molecular weights through the melt extrusion method. The dispersibility of the nucleating agents in PP, and the effect of the nucleating agents on the molecular weight, rheological behavior and crystallization behavior of PP were investigated. SEM and TEM analysis showed that the average radius of the dispersed particles (nucleating agents) was larger in LPP than that in HPP. The good dispersion of NA-21 also created more nucleation embryos for the adsorption of polypropylene molecules than the agglomerated NA-11. The gel permeation chromatography (GPC) analysis showed that the average molecular weight of HPP and LPP both decreased with the addition of a nucleating agent. The rotational rheometer and capillary rheometer analysis showed that the effect of NA-21 on reducing intermolecular entanglement was more significant, whether in HPP or LPP. The addition of NA-21 had less elastic energy storage and better flow stability, and could be processed at a higher speed. Simultaneously, the relaxation time in the blends with LPP was shorter than that with HPP. It was found that the crystallinity and nucleation efficiency of HPP/nucleating agent blends increased remarkably, while there was a barely perceptible increase in LPP/nucleating agent blends.
Collapse
|
8
|
Zhao X, Huang D, Ewulonu CM, Wu M, Wang C, Huang Y. Polypropylene/graphene nanoplatelets nanocomposites with high conductivity via solid-state shear mixing. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The research on facile, low-cost, and green process for the uniform dispersion of graphene nanoplatelets (GNPs) into polymer matrix has always been a considerable challenge in practical applications. The Van der Waals interaction between graphene layers can easily cause aggregation of the nanofillers. Here, we propose a new method to solve this problem by involving solid-state shear mixing to obtain a well-dispersed nanocomposite. The comprehensive properties of nanocomposite, including antistatic properties, mechanical properties, and thermal stability, can be significantly enhanced by this method. The surface resistivity of the nanocomposite can be up to 2.4 × 107 Ω sq−1 under 1 wt% content of GNPs, which is significantly better than the value obtained by conventional melting compounding and meets the required standard of less than 3 × 108 Ω sq−1 for actual application antistatic materials. The impact strength of the nanocomposite increased by 120.8% when compared with neat PP. At the same time, the heat distortion temperature and initial decomposition temperature of the nanocomposite with only 0.5 wt% content of GNPs are improved by 11.7°C and 110°C, respectively. In addition, GNPs is a heterogeneous nucleating agent that leads PP to emerge β crystal form. This study provides an effective and practical reference for the broad-scale industrial preparation of polymer-based graphene nanocomposites.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dayong Huang
- Functional Polymer Materials Center, National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chinomso M. Ewulonu
- Functional Polymer Materials Center, National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049 , China
- Department of Polymer and Textile Engineering, Nnamdi Azikiwe University , P. M. B 5025 , Awka , Nigeria
| | - Min Wu
- Functional Polymer Materials Center, National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chao Wang
- Functional Polymer Materials Center, National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
9
|
Wu K, Zhao Y, Li J, Yao J, Chen X, Shao Z. Crystallization, Mechanical, and Antimicrobial Properties of Diallyl Cyanuric Derivative-Grafted Polypropylene. ACS OMEGA 2021; 6:12794-12800. [PMID: 34056430 PMCID: PMC8154233 DOI: 10.1021/acsomega.1c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
A functional N-halamine precursor with double bonds, 1-3-diallyl-s-triazine-2,4,6-trione (DTT), was synthesized and grafted onto polypropylene using dicumyl peroxide (DCP) as an initiator via melt blending at 200 °C. The DTT content grafted onto the polypropylene (PP) backbone was depended on both DTT and DCP concentrations in feed. The crystallization temperature of PP increased from 116 °C (neat PP) to 123 °C (10% DTT) with the increasing DTT content. Meanwhile, the crystallization rate and relative crystallinity of PP were significantly increased after introduction of the N-halamine precursor. Moreover, the incorporation of DTT had partial compensation for the decreasing mechanical properties of polypropylene, which resulted from degradation. When the amount of added DTT reached up to 5%, the chlorinated DTT-modified PP sheets were able to kill 105-6 cfu/mL Escherichia coli (CMCC 44103) and Staphylococcus aureus (ATCC 6538) within 10 min. The DTT-modified PP with the regenerating antibacterial property may have great potential for application in packaging, filters, and hygienic products.
Collapse
Affiliation(s)
- Kun Wu
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Laboratory
of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Yan Zhao
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Laboratory
of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Jianqiao Li
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Laboratory
of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Jinrong Yao
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Laboratory
of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Xin Chen
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Laboratory
of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Laboratory
of Advanced Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Bandyopadhyay J, Mekoa C, Makwakwa D, Skosana S, Ray SS. Influence of nucleation and growth mechanisms on the heat deflection temperature of a reactively processed polypropylene nanocomposite. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jayita Bandyopadhyay
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Engineering Laval University Quebec Canada
| | - Caroline Mekoa
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Dimakatso Makwakwa
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | - Sifiso Skosana
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
11
|
Abdullah T, Gauthaman K, Hammad AH, Joshi Navare K, Alshahrie AA, Bencherif SA, Tamayol A, Memic A. Oxygen-Releasing Antibacterial Nanofibrous Scaffolds for Tissue Engineering Applications. Polymers (Basel) 2020; 12:polym12061233. [PMID: 32485817 PMCID: PMC7361702 DOI: 10.3390/polym12061233] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Lack of suitable auto/allografts has been delaying surgical interventions for the treatment of numerous disorders and has also caused a serious threat to public health. Tissue engineering could be one of the best alternatives to solve this issue. However, deficiency of oxygen supply in the wounded and implanted engineered tissues, caused by circulatory problems and insufficient angiogenesis, has been a rate-limiting step in translation of tissue-engineered grafts. To address this issue, we designed oxygen-releasing electrospun composite scaffolds, based on a previously developed hybrid polymeric matrix composed of poly(glycerol sebacate) (PGS) and poly(ε-caprolactone) (PCL). By performing ball-milling, we were able to embed a large percent of calcium peroxide (CP) nanoparticles into the PGS/PCL nanofibers able to generate oxygen. The composite scaffold exhibited a smooth fiber structure, while providing sustainable oxygen release for several days to a week, and significantly improved cell metabolic activity due to alleviation of hypoxic environment around primary bone-marrow-derived mesenchymal stem cells (BM-MSCs). Moreover, the composite scaffolds also showed good antibacterial performance. In conjunction to other improved features, such as degradation behavior, the developed scaffolds are promising biomaterials for various tissue-engineering and wound-healing applications.
Collapse
Affiliation(s)
- Turdimuhammad Abdullah
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah 08100, Malaysia
| | - Ahmed H. Hammad
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Electron Microscope and Thin Films Department, Physics Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Kasturi Joshi Navare
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Ahmed A. Alshahrie
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sidi A. Bencherif
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA;
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- UMR CNRS 7338 Biomechanics and Bioengineering, University of Technology of Compiègne, Sorbonne University, 60200 Compiègne, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA;
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Correspondence:
| |
Collapse
|
12
|
Broda J, Fabia J, Bączek M, Ślusarczyk C. Supramolecular Structure of Polypropylene Fibers Extruded with Addition of Functionalized Reduced Graphene Oxide. Polymers (Basel) 2020; 12:E910. [PMID: 32295248 PMCID: PMC7240734 DOI: 10.3390/polym12040910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/02/2023] Open
Abstract
An effective β-nucleating agent for polypropylene crystallization was obtained by the functionalization of reduced graphene oxide with calcium pimelate. The nucleating ability of the modified reduced graphene oxide (rGO-CP) was confirmed during non-isothermal crystallization. In further examinations, the rGO-CP was used as an additive to modify polypropylene fibers. The fibers were extruded in laboratory conditions. Gravity spun fibers containing three different concentrations of the rGO-CP and fibers taken at three different velocities were obtained. The supramolecular structure of the fibers was examined by means of calorimetric and X-Ray Scattering methods (DSC, WAXS, and SAXS). The considerable amount of -iPP was obtained only in the gravity spun fibers. In the fibers extruded at higher velocities, the diminishing impact of the additive on the fibers structure was revealed. The changes observed in the fiber structure in connection with the impact of the additive on polypropylene crystallization was discussed.
Collapse
Affiliation(s)
- Jan Broda
- Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland; (J.F.); (M.B.); (C.Ś.)
| | | | | | | |
Collapse
|