1
|
Park H, Patil TV, Dutta SD, Lee J, Ganguly K, Randhawa A, Kim H, Lim KT. Extracellular Matrix-Bioinspired Anisotropic Topographical Cues of Electrospun Nanofibers: A Strategy of Wound Healing through Macrophage Polarization. Adv Healthc Mater 2024; 13:e2304114. [PMID: 38295299 DOI: 10.1002/adhm.202304114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The skin serves as the body's outermost barrier and is the largest organ, providing protection not only to the body but also to various internal organs. Owing to continuous exposure to various external factors, it is susceptible to damage that can range from simple to severe, including serious types of wounds such as burns or chronic wounds. Macrophages play a crucial role in the entire wound-healing process and contribute significantly to skin regeneration. Initially, M1 macrophages infiltrate to phagocytose bacteria, debris, and dead cells in fresh wounds. As tissue repair is activated, M2 macrophages are promoted, reducing inflammation and facilitating restoration of the dermis and epidermis to regenerate the tissue. This suggests that extracellular matrix (ECM) promotes cell adhesion, proliferation, migrationand macrophage polarization. Among the numerous strategies, electrospinning is a versatile technique for obtaining ECM-mimicking structures with anisotropic and isotropic topologies of micro/nanofibers. Various electrospun biomaterials influence macrophage polarization based on their isotropic or anisotropic topologies. Moreover, these fibers possess a high surface-area-to-volume ratio, promoting the effective exchange of vital nutrients and oxygen, which are crucial for cell viability and tissue regeneration. Micro/nanofibers with diverse physical and chemical properties can be tailored to polarize macrophages toward skin regeneration and wound healing, depending on specific requirements. This review describes the significance of micro/nanostructures for activating macrophages and promoting wound healing.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
2
|
Ghosh S, Pati F. Decellularized extracellular matrix and silk fibroin-based hybrid biomaterials: A comprehensive review on fabrication techniques and tissue-specific applications. Int J Biol Macromol 2023; 253:127410. [PMID: 37844823 DOI: 10.1016/j.ijbiomac.2023.127410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Biomaterials play a fundamental role in tissue engineering by providing biochemical and physical cues that influence cellular fate and matrix development. Decellularized extracellular matrix (dECM) as a biomaterial is distinguished by its abundant composition of matrix proteins, such as collagen, elastin, fibronectin, and laminin, as well as glycosaminoglycans and proteoglycans. However, the mechanical properties of only dECM-based constructs may not always meet tissue-specific requirements. Recent advancements address this challenge by utilizing hybrid biomaterials that harness the strengths of silk fibroin (SF), which contributes the necessary mechanical properties, while dECM provides essential cellular cues for in vitro studies and tissue regeneration. This review discusses emerging trends in developing such biopolymer blends, aiming to synergistically combine the advantages of SF and dECM through optimal concentrations and desired cross-linking density. We focus on different fabrication techniques and cross-linking methods that have been utilized to fabricate various tissue-engineered hybrid constructs. Furthermore, we survey recent applications of such biomaterials for the regeneration of various tissues, including bone, cartilage, trachea, bladder, vascular graft, heart, skin, liver, and other soft tissues. Finally, the trajectory and prospects of the constructs derived from this blend in the tissue engineering field have been summarized, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Soham Ghosh
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Falguni Pati
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
3
|
Mahdian M, Tabatabai TS, Abpeikar Z, Rezakhani L, Khazaei M. Nerve regeneration using decellularized tissues: challenges and opportunities. Front Neurosci 2023; 17:1295563. [PMID: 37928728 PMCID: PMC10620322 DOI: 10.3389/fnins.2023.1295563] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
In tissue engineering, the decellularization of organs and tissues as a biological scaffold plays a critical role in the repair of neurodegenerative diseases. Various protocols for cell removal can distinguish the effects of treatment ability, tissue structure, and extracellular matrix (ECM) ability. Despite considerable progress in nerve regeneration and functional recovery, the slow regeneration and recovery potential of the central nervous system (CNS) remains a challenge. The success of neural tissue engineering is primarily influenced by composition, microstructure, and mechanical properties. The primary objective of restorative techniques is to guide existing axons properly toward the distal end of the damaged nerve and the target organs. However, due to the limitations of nerve autografts, researchers are seeking alternative methods with high therapeutic efficiency and without the limitations of autograft transplantation. Decellularization scaffolds, due to their lack of immunogenicity and the preservation of essential factors in the ECM and high angiogenic ability, provide a suitable three-dimensional (3D) substrate for the adhesion and growth of axons being repaired toward the target organs. This study focuses on mentioning the types of scaffolds used in nerve regeneration, and the methods of tissue decellularization, and specifically explores the use of decellularized nerve tissues (DNT) for nerve transplantation.
Collapse
Affiliation(s)
- Maryam Mahdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Mazzoni E, Iaquinta MR, Mosaico M, De Pace R, D'Agostino A, Tognon M, Martini F. Human Mesenchymal Stem Cells and Innovative Scaffolds for Bone Tissue Engineering Applications. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:514-531. [PMID: 37212264 DOI: 10.1089/ten.teb.2022.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Stem cell-based therapy is a significant topic in regenerative medicine, with a predominant role being played by human mesenchymal stem cells (hMSCs). The hMSCs have been shown to be suitable in regenerative medicine for the treatment of bone tissue. In the last few years, the average lifespan of our population has gradually increased. The need of biocompatible materials, which exhibit high performances, such as efficiency in bone regeneration, has been highlighted by aging. Current studies emphasize the benefit of using biomimetic biomaterials, also known as scaffolds, for bone grafts to speed up bone repair at the fracture site. For the healing of injured bone and bone regeneration, regenerative medicine techniques utilizing a combination of these biomaterials, together with cells and bioactive substances, have drawn a great interest. Cell therapy, based on the use of hMSCs, alongside materials for the healing of damaged bone, has obtained promising results. In this work, several aspects of cell biology, tissue engineering, and biomaterials applied to bone healing/regrowth will be considered. In addition, the role of hMSCs in these fields and recent progress in clinical applications are discussed. Impact Statement The restoration of large bone defects is both a challenging clinical issue and a socioeconomic problem on a global scale. Different therapeutic approaches have been proposed for human mesenchymal stem cells (hMSCs), considering their paracrine effect and potential differentiation into osteoblasts. However, different limitations are still to be overcome in using hMSCs as a therapeutic opportunity in bone fracture repair, including hMSC administration methods. To identify a suitable hMSC delivery system, new strategies have been proposed using innovative biomaterials. This review provides an update of the literature on hMSC/scaffold clinical applications for the management of bone fractures.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, and University of Ferrara, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Dentistry and Maxillo-Facial Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Maria Mosaico
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Raffaella De Pace
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio D'Agostino
- Dentistry and Maxillo-Facial Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Cao X, Lin X, Li N, Zhao X, Zhou M, Zhao Y. Animal tissue-derived biomaterials for promoting wound healing. MATERIALS HORIZONS 2023; 10:3237-3256. [PMID: 37278612 DOI: 10.1039/d3mh00411b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The skin serves as the primary barrier between the human body and external environment, and is therefore susceptible to damage from various factors. In response to this challenge, animal tissue-derived biomaterials have emerged as promising candidates for wound healing due to their abundant sources, low side-effect profiles, exceptional bioactivity, biocompatibility, and unique extracellular matrix (ECM) mimicry. The evolution of modern engineering technology and therapies has allowed these animal tissue-derived biomaterials to be transformed into various forms and modified to possess the necessary properties for wound repair. This review provides an overview of the wound healing process and the factors that influence it. We then describe the extraction methods, important properties, and recent practical applications of various animal tissue-derived biomaterials. Our focus then shifts to the critical properties of these biomaterials in skin wound healing and their latest research developments. Finally, we critically examine the limitations and future prospects of biomaterials generated from animal tissues in this field.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xiang Lin
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Ning Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
6
|
Elfawy LA, Ng CY, Amirrah IN, Mazlan Z, Wen APY, Fadilah NIM, Maarof M, Lokanathan Y, Fauzi MB. Sustainable Approach of Functional Biomaterials-Tissue Engineering for Skin Burn Treatment: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:ph16050701. [PMID: 37242483 DOI: 10.3390/ph16050701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Burns are a widespread global public health traumatic injury affecting many people worldwide. Non-fatal burn injuries are a leading cause of morbidity, resulting in prolonged hospitalization, disfigurement, and disability, often with resulting stigma and rejection. The treatment of burns is aimed at controlling pain, removing dead tissue, preventing infection, reducing scarring risk, and tissue regeneration. Traditional burn wound treatment methods include the use of synthetic materials such as petroleum-based ointments and plastic films. However, these materials can be associated with negative environmental impacts and may not be biocompatible with the human body. Tissue engineering has emerged as a promising approach to treating burns, and sustainable biomaterials have been developed as an alternative treatment option. Green biomaterials such as collagen, cellulose, chitosan, and others are biocompatible, biodegradable, environment-friendly, and cost-effective, which reduces the environmental impact of their production and disposal. They are effective in promoting wound healing and reducing the risk of infection and have other benefits such as reducing inflammation and promoting angiogenesis. This comprehensive review focuses on the use of multifunctional green biomaterials that have the potential to revolutionize the way we treat skin burns, promoting faster and more efficient healing while minimizing scarring and tissue damage.
Collapse
Affiliation(s)
- Loai A Elfawy
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ibrahim N Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adzim Poh Yuen Wen
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Wang Y, Lin J, Chen J, Liang R, Zhang Q, Li J, Shi M, Li L, He X, Lan T, Hui X, Tan H. Biodegradable polyurethane-incorporating decellularized spinal cord matrix scaffolds enhance Schwann cell reprogramming to promote peripheral nerve repair. J Mater Chem B 2023; 11:2115-2128. [PMID: 36779440 DOI: 10.1039/d2tb02679a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Decellularized extracellular matrix (dECM) nerve guide conduits (NGCs) are a promising strategy to replace autogenous nerve grafting for the treatment of peripheral nerve system (PNS) injury. However, dECM conduits with mechanical properties that match those of peripheral nerves are yet to be well developed. Herein, we developed polyurethane-based NGCs incorporating decellularized spinal cord (BWPU-DSC NGCs) to repair peripheral nerves. BWPU-DSC NGCs have an inner three-dimensional micro-nanostructure. The mechanical properties of BWPU-DSC NGCs were similar to those of polyurethane NGCs, which were proven to promote peripheral nerve regeneration. An in vitro study indicated that BWPU-DSC NGCs could boost the proliferation and growth of cell processes in Schwann and neuron-like cells. In a rat sciatic nerve transected injury model, BWPU-DSC NGCs exhibited a dramatic increase in nerve repair, similar to that obtained by the current gold standard autograft implantation at only 6 weeks post-implantation, whereas polyurethane NGCs still displayed incomplete nerve repair. Histological analysis revealed that BWPU-DSC NGCs could induce the reprogramming of Schwann cells to promote axon regeneration and remyelination. Moreover, reprogrammed Schwann cells together with BWPU-DSC NGCs had anti-inflammatory effects and altered the activation state of macrophages to M2 phenotypes to enhance PNS regeneration. In this study, we provided a strategy to prepare polyurethane-based dECM NGCs enriched with bioactive molecules to promote PNS regeneration.
Collapse
Affiliation(s)
- Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Jingjing Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Jinlin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Qiao Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Min Shi
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, UESTC, Chengdu, 610000, China.
| | - Lei Li
- Gastrointestinal Surgery Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, UESTC, Chengdu, 610000, China
| | - Xueling He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China. .,Editorial Board of Journal of Sichuan University (Medical Sciences), Sichuan University, Chengdu, Sichuan, 610000, China
| | - Ting Lan
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, UESTC, Chengdu, 610000, China.
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
8
|
Ali F, Kalva SN, Koç M. Additive Manufacturing of Polymer/Mg-Based Composites for Porous Tissue Scaffolds. Polymers (Basel) 2022; 14:5460. [PMID: 36559829 PMCID: PMC9783552 DOI: 10.3390/polym14245460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Due to their commercial availability, superior processability, and biocompatibility, polymers are frequently used to build three-dimensional (3D) porous scaffolds. The main issues limiting the widespread clinical use of monophasic polymer scaffolds in the bone healing process are their inadequate mechanical strength and inappropriate biodegradation. Due to their mechanical strength and biocompatibility, metal-based scaffolds have been used for various bone regenerative applications. However, due to the mismatch in mechanical properties and nondegradability, they lack integration with the host tissues, resulting in the production of fiber tissue and the release of toxic ions, posing a risk to the durability of scaffolds. Due to their natural degradability in the body, Mg and its alloys increasingly attract attention for orthopedic and cardiovascular applications. Incorporating Mg micro-nano-scale particles into biodegradable polymers dramatically improves scaffolds and implants' strength, biocompatibility, and biodegradability. Polymer biodegradable implants also improve the quality of life, particularly for an aging society, by eliminating the secondary surgery often needed to remove permanent implants and significantly reducing healthcare costs. This paper reviews the suitability of various biodegradable polymer/Mg composites for bone tissue scaffolds and then summarizes the current status and challenges of polymer/magnesium composite scaffolds. In addition, this paper reviews the potential use of 3D printing, which has a unique design capability for developing complex structures with fewer material waste at a faster rate, and with a personalized and on-site fabrication possibility.
Collapse
Affiliation(s)
- Fawad Ali
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
| | | | - Muammer Koç
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
| |
Collapse
|
9
|
Topuz B, Aydin HM. Preparation of decellularized optic nerve grafts. Artif Organs 2021; 46:618-632. [PMID: 34714559 DOI: 10.1111/aor.14098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Decellularized tissues based on well-conserved extracellular matrices (ECMs) are a common area of research in tissue engineering. Although several decellularization protocols have been suggested for several types of tissues, studies on the optic nerve have been limited. METHODS We report decellularization protocol with different detergent for the preparation of acellular optic nerve and tissues were examined. DNA, glycosaminoglycan (GAG), and collagen content of the groups were evaluated with biochemical analyses and examined with histological staining. Mechanical properties, chemical components as well as cytotoxic properties of tissues were compared. RESULTS According to the results, it was determined that TX-100 (Triton X-100) was insufficient in decellularization when used alone. In addition, it was noticed that 85% of GAG content was preserved by using TX-100 and TX-100-SD (sodium deoxycholate), while this ratio was calculated as 30% for SDS. In contrast, the effect of the decellularization protocols on ECM structure of the tissues was evaluated by scanning and transmission electron microscopy (SEM and TEM) and determined their mechanical properties. Cytotoxicity analyses were exhibited minimum 95% cell viability for all groups, suggesting that there are no cytotoxic properties of the methods on L929 mouse fibroblast cells. CONCLUSIONS The combination of TX-100-SD and TX-100-SDS (sodium dodecyl sulfate) were was determined as the most effective methods to the literature for optic nerve decellularization.
Collapse
Affiliation(s)
- Bengisu Topuz
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey.,Centre for Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Park W, Gao G, Cho DW. Tissue-Specific Decellularized Extracellular Matrix Bioinks for Musculoskeletal Tissue Regeneration and Modeling Using 3D Bioprinting Technology. Int J Mol Sci 2021; 22:7837. [PMID: 34360604 PMCID: PMC8346156 DOI: 10.3390/ijms22157837] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The musculoskeletal system is a vital body system that protects internal organs, supports locomotion, and maintains homeostatic function. Unfortunately, musculoskeletal disorders are the leading cause of disability worldwide. Although implant surgeries using autografts, allografts, and xenografts have been conducted, several adverse effects, including donor site morbidity and immunoreaction, exist. To overcome these limitations, various biomedical engineering approaches have been proposed based on an understanding of the complexity of human musculoskeletal tissue. In this review, the leading edge of musculoskeletal tissue engineering using 3D bioprinting technology and musculoskeletal tissue-derived decellularized extracellular matrix bioink is described. In particular, studies on in vivo regeneration and in vitro modeling of musculoskeletal tissue have been focused on. Lastly, the current breakthroughs, limitations, and future perspectives are described.
Collapse
Affiliation(s)
- Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China;
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
11
|
Active agents loaded extracellular matrix mimetic electrospun membranes for wound healing applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Jin Y, Shahriari D, Jeon EJ, Park S, Choi YS, Back J, Lee H, Anikeeva P, Cho SW. Functional Skeletal Muscle Regeneration with Thermally Drawn Porous Fibers and Reprogrammed Muscle Progenitors for Volumetric Muscle Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007946. [PMID: 33605006 DOI: 10.1002/adma.202007946] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Skeletal muscle has an inherent capacity for spontaneous regeneration. However, recovery after severe injuries such as volumetric muscle loss (VML) is limited. There is therefore a need to develop interventions to induce functional skeletal muscle restoration. One suggested approach includes tissue-engineered muscle constructs. Tissue-engineering treatments have so far been impeded by the lack of reliable cell sources and the challenges in engineering of suitable tissue scaffolds. To address these challenges, muscle extracellular matrix (MEM) and induced skeletal myogenic progenitor cells (iMPCs) are integrated within thermally drawn fiber based microchannel scaffolds. The microchannel fibers decorated with MEM enhance differentiation and maturation of iMPCs. Furthermore, engraftment of these bioengineered hybrid muscle constructs induce de novo muscle regeneration accompanied with microvessel and neuromuscular junction formation in a VML mouse model, ultimately leading to functional recovery of muscle activity.
Collapse
Affiliation(s)
- Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dena Shahriari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jonghyeok Back
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Khoshnood N, Zamanian A. Decellularized extracellular matrix bioinks and their application in skin tissue engineering. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Politi S, Carotenuto F, Rinaldi A, Di Nardo P, Manzari V, Albertini MC, Araneo R, Ramakrishna S, Teodori L. Smart ECM-Based Electrospun Biomaterials for Skeletal Muscle Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1781. [PMID: 32916791 PMCID: PMC7558997 DOI: 10.3390/nano10091781] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
The development of smart and intelligent regenerative biomaterials for skeletal muscle tissue engineering is an ongoing challenge, owing to the requirement of achieving biomimetic systems able to communicate biological signals and thus promote optimal tissue regeneration. Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements, down to nanoscale and the properties of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the "click" concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the "click" reactions. In this paper, we first provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials. Finally, we propose a design of composite electrospun biomaterials suitable for skeletal muscle tissue regeneration.
Collapse
Affiliation(s)
- Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | - Felicia Carotenuto
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Antonio Rinaldi
- Department of Sustainability (SSPT), ENEA, 00123 Rome, Italy;
| | - Paolo Di Nardo
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
- L.L. Levshin Institute of Cluster Oncology, I. M. Sechenov First Medical University, Moscow 119991, Russia
| | - Vittorio Manzari
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | | | - Rodolfo Araneo
- Department of Astronautics Electrical and Energy Engineering (DIAEE), University of Rome “La Sapienza”, 00184 Rome, Italy;
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
15
|
Jafarkhani M, Salehi Z, Mashayekhan S, Kowsari-Esfahan R, Orive G, Dolatshahi-Pirouz A, Bonakdar S, Shokrgozar MA. Induced cell migration based on a bioactive hydrogel sheet combined with a perfused microfluidic system. Biomed Mater 2020; 15:045010. [PMID: 32120352 DOI: 10.1088/1748-605x/ab7b90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endothelial cell migration is a crucial step in the process of new blood vessel formation-a necessary process to maintain cell viability inside thick tissue constructs. Here, we report a new method for maintaining cell viability and inducing cell migration using a perfused microfluidic platform based on collagen gel and a gradient hydrogel sheet. Due to the helpful role of the extracellular matrix components in cell viability, we developed a hydrogel sheet from decellularized tissue (DT) of the bovine heart and chitosan (CS). The results showed that hydrogel sheets with an optimum weight ratio of CS/DT = 2 possess a porosity of around 75%, a mechanical strength of 23 kPa, and display cell viability up to 78%. Then, we immobilized a radial gradient of vascular endothelial growth factor (VEGF) on the hydrogel sheet to promote human umbilical vein endothelial cell migration. Finally, we incorporated the whole system as an entirety on the top of the microfluidic platform and studied cell migration through the hydrogel sheet in the presence of soluble and immobilized VEGF. The results demonstrated that immobilized VEGF stimulated cell migration in the hydrogel sheet at all depths compared with soluble VEGF. The results also showed that applying a VEGF gradient in both soluble and immobilized states had a significant effect on cell migration at limited depths (<100 μm). The main finding of this study is a significant improvement in cell migration using an in vivo imitating, cost-efficient and highly reproducible platform, which may open up a new perspective for tissue engineering applications.
Collapse
Affiliation(s)
- Mahboubeh Jafarkhani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Zeinab Salehi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| | - Reza Kowsari-Esfahan
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
- Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
16
|
Abstract
The skin is the largest organ in the body, fulfilling a variety of functions and acting as a barrier for internal organs against external insults. As for extensive or irreversible damage, skin autografts are often considered the gold standard, however inherent limitations highlight the need for alternative strategies. Engineering of human-compatible tissues is an interdisciplinary and active field of research, leading to the production of scaffolds and skin substitutes to guide repair and regeneration. However, faithful reproduction of extracellular matrix (ECM) architecture and bioactive content capable of cell-instructive and cell-responsive properties remains challenging. ECM is a heterogeneous, connective network composed of collagens, glycoproteins, proteoglycans, and small molecules. It is highly coordinated to provide the physical scaffolding, mechanical stability, and biochemical cues necessary for tissue morphogenesis and homeostasis. Decellularization processes have made it possible to isolate the ECM in its native and three-dimensional form from a cell-populated tissue for use in skin regeneration. In this review, we present recent knowledge about these decellularized biomaterials with the potential to be used as dermal or skin substitutes in clinical applications. We detail tissue sources and clinical indications with success rates and report the most effective decellularization methods compatible with clinical use.
Collapse
|
17
|
Patel KH, Talovic M, Dunn AJ, Patel A, Vendrell S, Schwartz M, Garg K. Aligned nanofibers of decellularized muscle extracellular matrix for volumetric muscle loss. J Biomed Mater Res B Appl Biomater 2020; 108:2528-2537. [DOI: 10.1002/jbm.b.34584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 02/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Krishna H. Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Andrew J. Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Sara Vendrell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Mark Schwartz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| |
Collapse
|
18
|
Gallo L, Madaghiele M, Salvatore L, Barca A, Scialla S, Bettini S, Valli L, Verri T, Bucalá V, Sannino A. Integration of PLGA Microparticles in Collagen-Based Matrices: Tunable Scaffold Properties and Interaction Between Microparticles and Human Epithelial-Like Cells. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2018.1552857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- L.C. Gallo
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahía Blanca, Argentina
- Pilot Plant of Chemical Engineering, PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
| | - M. Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - L. Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - A. Barca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - S. Scialla
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - S. Bettini
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - L. Valli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - T. Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - V. Bucalá
- Pilot Plant of Chemical Engineering, PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
- Department of Chemical Engineering, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - A. Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
19
|
Elbuluk AM, Coxe FR, Schimizzi GV, Ranawat AS, Bostrom MP, Sierra RJ, Sculco PK. Abductor Deficiency-Induced Recurrent Instability After Total Hip Arthroplasty. JBJS Rev 2020; 8:e0164. [DOI: 10.2106/jbjs.rvw.18.00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
20
|
Arakelian L, Caille C, Faivre L, Corté L, Bruneval P, Shamdani S, Flageollet C, Albanese P, Domet T, Jarraya M, Setterblad N, Kellouche S, Larghero J, Cattan P, Vanneaux V. A clinical-grade acellular matrix for esophageal replacement. J Tissue Eng Regen Med 2019; 13:2191-2203. [PMID: 31670903 DOI: 10.1002/term.2983] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022]
Abstract
In pathologies of the esophagus such as esophageal atresia, cancers, and caustic injuries, methods for full thickness esophageal replacement require the sacrifice of healthy intra-abdominal organs such as the stomach and the colon and are associated with high morbidity, mortality, and poor functional results. To overcome these problems, tissue engineering methods are developed to create a substitute with scaffolds and cells. The aim of this study was to develop a simple and safe decellularization process in order to obtain a clinical grade esophageal extracellular matrix. Following the decontamination step, porcine esophagi were decellularized in a bioreactor with sodium dodecyl sulfate and ethylenediaminetetraacetic acid for 3 days and were rinsed with deionized water. DNA was eliminated by a 3-hr DNase treatment. To remove any residual detergent, the matrix was then incubated with an absorbing resin. The resulting porcine esophageal matrix was characterized by the assessment of the efficiency of the decellularization process (DNA quantification), evaluation of sterility and absence of cytotoxicity, and its composition and biomechanical properties, as well as the possibility to be reseeded with mesenchymal stem cells. Complete decellularization with the preservation of the general structure, composition, and biomechanical properties of the native esophageal matrix was obtained. Sterility was maintained throughout the process, and the matrix showed no cytotoxicity. The resulting matrix met clinical grade criteria and was successfully reseeded with mesenchymal stem cells..
Collapse
Affiliation(s)
- Lousineh Arakelian
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Clémentine Caille
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Laurent Corté
- MAT-Centre des Matériaux, MINES ParisTech, PSL Research University, CNRS UMR 7633, France.,Laboratoire Matière Molle et Chimie, ESPCI Paris, PSL Research University, CNRS UMR 7167, Paris, France
| | - Patrick Bruneval
- Department of Pathology, Georges Pompidou European Hospital, AP-HP, Paris, France
| | - Sara Shamdani
- Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Camille Flageollet
- Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Patricia Albanese
- Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Thomas Domet
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Mohamed Jarraya
- Banque des Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Niclas Setterblad
- Technological Core facility of the Hematology Institute, Université Paris-Diderot and Inserm, Hôpital Saint-Louis, Paris, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Pierre Cattan
- Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France.,Department of Digestive Surgery, St-Louis Hospital-Paris 7 University, Paris, France
| | - Valérie Vanneaux
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| |
Collapse
|
21
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
22
|
Velmurugan BK, Bharathi Priya L, Poornima P, Lee LJ, Baskaran R. Biomaterial aided differentiation and maturation of induced pluripotent stem cells. J Cell Physiol 2018; 234:8443-8454. [PMID: 30565686 DOI: 10.1002/jcp.27769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
Engineering/reprogramming differentiated adult somatic cells to gain the ability to differentiate into any type of cell lineage are called as induced pluripotent stem cells (iPSCs). Offering unlimited self-renewal and differentiation potential, these iPSC are aspired to meet the growing demands in the field of regenerative medicine, tissue engineering, disease modeling, nanotechnology, and drug discovery. Biomaterial fabrication with the rapid evolution of technology increased their versatility and utility in regenerative medicine and tissue engineering, revolutionizing the stem cell biology research with the property to guide the process of proliferation, differentiation, and morphogenesis. Combining traditional culture platforms of iPSC with biomaterials aids to overcome the limitations associated with derivation, proliferation, and maturation, thereby could improve the clinical translation of iPSC. The present review discusses in brief about the reprogramming techniques for the derivation iPSC and details on several biomaterial guided differentiation of iPSC to different cell types with specific relevance to tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Lohanathan Bharathi Priya
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Paramasivan Poornima
- Molecular and Cellular Pharmacology Laboratory, School of Science, Engineering and Technology, University of Abertay, Dundee, UK
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rathinasamy Baskaran
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|