1
|
Hayatshahi HS, Luedtke RR, Taylor M, Chen PJ, Blass BE, Liu J. Factors Governing Selectivity of Dopamine Receptor Binding Compounds for D2R and D3R Subtypes. J Chem Inf Model 2021; 61:2829-2843. [PMID: 33988991 DOI: 10.1021/acs.jcim.1c00036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the D3 dopamine receptor (D3R) is a promising pharmacotherapeutic strategy for the treatment of many disorders. The structure of the D3R is similar to the D2 dopamine receptor (D2R), especially in the transmembrane spanning regions that form the orthosteric binding site, making it difficult to identify D3R selective pharmacotherapeutic agents. Here, we examine the molecular basis for the high affinity D3R binding and D3R vs D2R binding selectivity of substituted phenylpiperazine thiopheneamides. We show that removing the thiophenearylamide portion of the ligand consistently decreases the affinity of these ligands at D3R, while not affecting their affinity at the D2R. Our long (>10 μs) molecular dynamics simulations demonstrated that both dopamine receptor subtypes adopt two major conformations that we refer to as closed or open conformations, with D3R sampling the open conformation more frequently than D2R. The binding of ligands with conjoined orthosteric-allosteric binding moieties causes the closed conformation to populate more often in the trajectories. Also, significant differences were observed in the extracellular loops (ECL) of these two receptor subtypes leading to the identification of several residues that contribute differently to the ligand binding for the two receptors that could potentially contribute to ligand binding selectivity. Our observations also suggest that the displacement of ordered water in the binding pocket of D3R contributes to the affinity of the compounds containing an allosteric binding motif. These studies provide a better understanding of how a bitopic mode of engagement can determine ligands that bind selectively to D2 and D3 dopamine receptor subtypes.
Collapse
Affiliation(s)
- Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Peng-Jen Chen
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Benjamin E Blass
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| |
Collapse
|
2
|
Utreja D, Kaur J, Kaur K, Jain P. Recent Advances in 1,3,5-Triazine Derivatives as Antibacterial Agents. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x17666200129094032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triazine, one of the nitrogen containing heterocyclic compounds has attracted the considerable
interest of researchers due to the vast array of biological properties such as anti-viral, antitumor,
anti-convulsant, analgesic, antioxidant, anti-depressant, herbicidal, insecticidal, fungicidal,
antibacterial and anti-inflammatory activities offered by it. Various antibacterial agents have been
synthesized by researchers to curb bacterial diseases but due to rapid development in drug resistance,
tolerance and side effects, there had always been a need for the synthesis of a new class of antibacterial
agents that would exhibit improved pharmacological action. Therefore, this review mainly focuses
on the various methods for the synthesis of triazine derivatives and their antibacterial activity.
Collapse
Affiliation(s)
- Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Jagdish Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Komalpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| | - Palak Jain
- Department of Chemistry, Punjab Agricultural University, Ludhiana-141004, India
| |
Collapse
|
3
|
Design, synthesis, bioactivity, and computational studies of some morpholine-clubbed coumarinyl acetamide and cinnamide derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1324-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Lakum HP, Shah DR, Chikhalia KH. Convenient Synthesis of Novel Quinazoline Congeners via Copper Catalyzed C-N/C-S Coupling and Their Biological Evaluation. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Harshad P. Lakum
- Department of Chemistry, School of Sciences; Gujarat University; Ahmedabad 380009 Gujarat India
| | - Dhruvin R. Shah
- Department of Chemistry, School of Sciences; Gujarat University; Ahmedabad 380009 Gujarat India
| | - Kishor H. Chikhalia
- Department of Chemistry, School of Sciences; Gujarat University; Ahmedabad 380009 Gujarat India
| |
Collapse
|