1
|
Bheemayya L, Kamble RR, Shettar AK, Metre TV, Kodasi B, Sannaikar MS, Inamdar SR, M MPK, Hoskeri JH. Design and Synthesis of Novel Fluorescent 2-(aryloxy)-3-(4,5-diaryl)-1H-imidazol-2-yl)quinolines: Solvatochromic, DFT, TD-DFT Studies, COX-1 and COX-2 Inhibition and Antioxidant Properties. J Fluoresc 2024; 34:2239-2262. [PMID: 37733111 DOI: 10.1007/s10895-023-03418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
The present work focuses on the synthesis of novel heterocycles 2-(aryloxy)-3-(4,5-diaryl-1H-imidazol-2-yl)quinolines (6k-v) by an effective condensation reaction. These molecules exhibited fluorescent properties and hence for the proper understanding of their optical behavior and quantum yields, solvatochromic studies have been carried out. Further, frontier molecular orbitals, molecular electrostatic potential (MEP), and geometrical structure optimization have been investigated using the B3LYP/6-311G ++ (d, p) method. The energy gap between the HOMO, LUMO of the optical and energy band gap is determined by DFT and UV-visible spectra for TD-DFT studies are done. The screening of these compounds for in vitro COX-1 and COX-2 inhibition and DPPH free radical scavenging ability assays produced promising results. The binding interactions of these molecules against the COX-2 enzyme (PDB: 5IKR) were validated by docking studies.
Collapse
Affiliation(s)
- Lokesh Bheemayya
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | - Ravindra R Kamble
- Department of Chemistry, Karnatak University, Dharwad, 580003, India.
| | - Arun K Shettar
- Department of Preclinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd, Hubli, 580031, India
| | - Tukaram V Metre
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | - Barnabas Kodasi
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | | | - Sanjeev R Inamdar
- Department of Studies in Physics, Karnatak University, Dharwad, 580003, India
| | - Mussuvir Pasha K M
- Department of Chemistry, Karnatak Science College, Dharwad, 580 003, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura, 586108, India
| |
Collapse
|
2
|
Wang M, Gao Y, Zhao XJ, Gao L, He Y. Electrochemical multicomponent [2+2+1] cascade cyclization of enaminones and primary amines towards the synthesis of 4-acylimidazoles. Chem Commun (Camb) 2024; 60:2677-2680. [PMID: 38352990 DOI: 10.1039/d3cc06196e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
An electrochemical multicomponent [2+2+1] cascade cyclization of enaminones and primary amines towards the synthesis of 4-acylimidazoles has been developed. In an undivided cell, enaminones and primary amines can smoothly participate in this reaction to provide a series of 1,2-disubstituted 4-acylimidazoles at room temperature. The reaction avoids the use of both transition-metal catalysts and oxidation reagents, which makes it more sustainable and renewable.
Collapse
Affiliation(s)
- Mingxu Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| | - Ying Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| | - Lu Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming, 650500, China.
| |
Collapse
|
3
|
Hassan RM, Abd El-Maksoud MS, Ghannam IAY, El-Azzouny AAS, Aboul-Enein MN. Synthetic non-toxic anti-biofilm agents as a strategy in combating bacterial resistance. Eur J Med Chem 2023; 262:115867. [PMID: 37866335 DOI: 10.1016/j.ejmech.2023.115867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
The tremendous increase in the bacterial resistance to the available antibiotics is a serious problem for the treatment of various infections. Biofilm formation in bacteria significantly contributes to the bacterial survival in host cells, and is considered as an crucial factor, responsible for bacterial resistance. The response of the bacterial cells in the biofilm to antibiotics is completely different from that of the free floating planktonic cells of the same strain. The anti-biofilm agents that could inhibit the biofilm production without affecting the bacterial growth, apply less selective pressure over the bacterial strains than the traditional antibiotics; thus the development of bacterial resistance would be of low incidence. Many attempts have been performed to discover novel agents capable of interfering with the bacterial biofilm life cycle, and several compounds have shown promising activities in suppressing the biofilm production or in dispersing mature existing biofilms. This review describes the different chemical classes that have anti-biofilm effects against different Gram-positive and Gram-negative bacteria without affecting the bacterial growth.
Collapse
Affiliation(s)
- Rasha Mohamed Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| | - Mohamed Samir Abd El-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Iman Ahmed Youssef Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Aida Abdel-Sattar El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Nabil Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
4
|
El-Sofany WI, El-sayed WA, Abd-Rabou AA, El-Shahat M. Synthesis of new imidazole-triazole-glycoside hybrids as anti-breast cancer candidates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Katikireddy R, Marri S, Kakkerla R, Murali Krishna MPS, Gandamalla D, Reddy YN. Synthesis, Anticancer Activity and Molecular Docking Studies of Hybrid Benzimidazole-1,3,4-Oxadiazol-2- N-Alkyl/Aryl Amines. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1959352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ramamurthy Katikireddy
- Department of Chemistry, JNTUK, Kakinada, Andhra Pradesh, India
- JN Pharmacity, Enantilabs Pvt. Ltd, Visakhapatnam, Andhra Pradesh, India
| | - Srinivas Marri
- Department of Chemistry, JNTUK, Kakinada, Andhra Pradesh, India
- Department of Chemistry, Siddhartha Degree and P.G. College, Narsampet, Telangana State, India
| | - Ramu Kakkerla
- Department of Chemistry, Satavahana University, Karimnagar, Telangana State, India
| | | | - Durgaiah Gandamalla
- Department of Pharmacology and Toxicology, Kakatiya University, Warangal, Telangana State, India
| | - Y. N. Reddy
- Department of Pharmacology and Toxicology, Kakatiya University, Warangal, Telangana State, India
| |
Collapse
|
6
|
Alghamdi SS, Suliman RS, Almutairi K, Kahtani K, Aljatli D. Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3289-3312. [PMID: 34354342 PMCID: PMC8329171 DOI: 10.2147/dddt.s307113] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Various imidazole-containing compounds have been tested for their medical usefulness in clinical trials for several disease conditions. The rapid expansion of imidazole-based medicinal chemistry suggests the promising and potential therapeutic values of imidazole-derived compounds for treating incurable diseases. Imidazole core scaffold contains three carbon atoms, and two nitrogen with electronic-rich characteristics that are responsible for readily binding with a variety of enzymes, proteins, and receptors compared to the other heterocyclic rings. Herein, we provide a thorough overview of the current research status of imidazole-based compounds with a wide variety of biological activities including anti-cancer, anti-microbial, anti-inflammatory and their potential mechanisms including topoisomerase IIR catalytic inhibition, focal adhesion kinase (FAK) inhibition, c-MYC G-quadruplex DNA stabilization, and aurora kinase inhibition. Additionally, a great interest was reported in the discovery of novel imidazole compounds with anti-microbial properties that break DNA double-strand helix and inhibit protein kinase. Moreover, anti-inflammatory mechanisms of imidazole derivatives include inhibition of COX-2 enzyme, inhibit neutrophils degranulation, and generation of reactive oxygen species. This systemic review helps to design and discover more potent and efficacious imidazole compounds based on the reported derivatives, their ADME profiles, and bioavailability scores that together aid to advance this class of compounds.
Collapse
Affiliation(s)
- Sahar S Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia.,Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Rasha S Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia.,Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Khlood Almutairi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Khawla Kahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Dimah Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Zhan Z, Zhang M, Jiang P, He J, Luo N, Wang H, Wang M, Huang G. Selective Synthesis of Trisubstituted Imidazoles by Iodine‐Catalyzed [3+2] Cycloadditions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhenzhen Zhan
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Mingming Zhang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Pengbo Jiang
- Department Zhejiang Pharmaceutical Co., Ltd. Changhai Biological Branch Zhe Jiang Shaoxing P. R. China
| | - Jianping He
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Hesong Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Meng Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| |
Collapse
|
8
|
Siwach A, Verma PK. Synthesis and therapeutic potential of imidazole containing compounds. BMC Chem 2021; 15:12. [PMID: 33602331 PMCID: PMC7893931 DOI: 10.1186/s13065-020-00730-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 12/15/2020] [Indexed: 02/15/2023] Open
Abstract
Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. The imidazole name was reported by Arthur Rudolf Hantzsch (1857–1935) in 1887. 1, 3-diazole is an amphoteric in nature i.e. it shows both acidic and basic properties. It is a white or colorless solid that is highly soluble in water and other polar solvents. Due to the presence of a positive charge on either of two nitrogen atom, it shows two equivalent tautomeric forms. Imidazole was first named glyoxaline because the first synthesis has been made by glyoxal and ammonia. It is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. Among the different heterocyclic compounds, imidazole is better known due to its broad range of chemical and biological properties. Imidazole has become an important synthon in the development of new drugs. The derivatives of 1, 3-diazole show different biological activities such as antibacterial, antimycobacterial, anti-inflammatory, antitumor, antidiabetic, anti-allergic, antipyretic, antiviral, antioxidant, anti-amoebic, antihelmintic, antifungal and ulcerogenic activities, etc. as reported in the literature. There are different examples of commercially available drugs in the market which contains 1, 3-diazole ring such as clemizole (antihistaminic agent), etonitazene (analgesic), enviroxime (antiviral), astemizole (antihistaminic agent), omeprazole, pantoprazole (antiulcer), thiabendazole (antihelmintic), nocodazole (antinematodal), metronidazole, nitroso-imidazole (bactericidal), megazol (trypanocidal), azathioprine (anti rheumatoid arthritis), dacarbazine (Hodgkin's disease), tinidazole, ornidazole (antiprotozoal and antibacterial), etc. This present review summarized some pharmacological activities and various kinds of synthetic routes for imidazole and their derived products. ![]()
Collapse
Affiliation(s)
- Ankit Siwach
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
9
|
Alminderej FM. Synthesis, Design and Biological Evaluation of Antibacterial Activity of Novel Mixed Metal Complexes Derived from Benzoimidazolphenylethanamine and 6-Amino-N,N-dimethyluracil. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617666200210111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Benzoimidazolphenylethanamine (BPE) was synthesized through the condensation reaction
of 1,2-phenyldiamine and L-phenylalanine. The new complexes were prepared from the reaction of 6-
amino-N,N-dimethyluracil (ADU), benzoimidazolphenylethanamine and Cadmium (II), Tin (II), Copper
(II) and Nickel (II) metal respectively. All new hybrid complexes were fully characterized by spectroscopic
data of FTIR, UV-Visible electronic absorption, thermal analysis, X-ray powder diffraction
studies and mass spectroscopy. Spectra analyses of the hybrid metal complexes showed the tetrahedral
coordination of the ligands to the metal ions via the nitrogen atoms. The in vitro antibacterial activities
of the hybrid complexes were assayed against four bacterial isolates namely, Micrococcus luteus,
Staphylococcus aureus as Gram-positive bacteria, Pseudomonas aeruginosa and Escherichia coli as
Gram-negative bacteria using the agar well diffusion method. Most of the tested isolates were sensitive
to most metal hybrid complexes. The drug-likeness and bioactivity properties were calculated using
Molinspiration Cheminformatics software.
Collapse
Affiliation(s)
- Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452,Saudi Arabia
| |
Collapse
|
10
|
Chaudhry F, Naureen S, Aslam M, Al‐Rashida M, Rahman J, Huma R, Fatima J, Khan M, Munawar MA, Ain Khan M. Identification of Imidazolylpyrazole Ligands as Potent Urease Inhibitors: Synthesis, Antiurease Activity and In Silico Docking Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.202002482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Faryal Chaudhry
- Department of Chemistry Kinnaird College for Women Lahore 93-Jail Road Lahore 54000 Pakistan
| | - Sadia Naureen
- Institute of the Chemistry, Quaid-e-Azam Campus University of the Punjab Lahore 54590 Pakistan
| | - Misbah Aslam
- Department of Chemistry the Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Mariya Al‐Rashida
- Department of Chemistry, Forman Christian College A Chartered University) Ferozepur Road Lahore 54600 Pakistan
| | - Jameel Rahman
- Department of Chemistry the Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Rahila Huma
- Department of Chemistry Kinnaird College for Women Lahore 93-Jail Road Lahore 54000 Pakistan
| | - Javeria Fatima
- Department of Chemistry Kinnaird College for Women Lahore 93-Jail Road Lahore 54000 Pakistan
| | - Mavra Khan
- Department of Chemistry Kinnaird College for Women Lahore 93-Jail Road Lahore 54000 Pakistan
| | - Munawar Ali Munawar
- Institute of the Chemistry, Quaid-e-Azam Campus University of the Punjab Lahore 54590 Pakistan
| | - Misbahul Ain Khan
- Institute of the Chemistry, Quaid-e-Azam Campus University of the Punjab Lahore 54590 Pakistan
- Department of Chemistry the Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| |
Collapse
|
11
|
Sharma S, Kumar D, Singh G, Monga V, Kumar B. Recent advancements in the development of heterocyclic anti-inflammatory agents. Eur J Med Chem 2020; 200:112438. [DOI: 10.1016/j.ejmech.2020.112438] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
|