1
|
Cho Y, Yoo HS, Kim SD, Ko M, Joo HE, Jang S, Jeong MK. Herbal Medicines for the Improvement of Immune Function in Patients With Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Integr Cancer Ther 2024; 23:15347354241287775. [PMID: 39380153 PMCID: PMC11483700 DOI: 10.1177/15347354241287775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Background: Lung cancer has the highest mortality rate of all cancers worldwide. Conserving the immune system and reducing the adverse events associated with cancer treatment have become increasingly important. Our study aimed to investigate the immunological effects of herbal medicine (HM) alone, independent of conventional cancer therapies, in patients with non-small cell lung cancer (NSCLC). Methods: We searched 8 databases for articles published until March 2023. Bias risk was assessed using RevMan 5.4. Meta-analyses of CD4+ and CD8+ levels reported in the included RCTs were also performed. Results: A total of 610 patients from 5 RCTs were included in the analysis. Immune markers in the peripheral blood of patients treated with HM alone were compared with those in the control group. As a result of meta-analyses, CD4+ (three studies; mean difference(MD) = 5.21, 95 confidence interval (CI) [3.26, 7.27], I2 = 61%, n = 428) and CD4+/CD8+ (two studies; MD = 0.22, 95% CI [0.18, 0.26], I2 = 0%, n = 278) significantly increased in the treatment group, while CD8+ levels (three studies; MD = -3.04, 95% CI [-5.80, -0.29], I2 = 74%, n = 428) decreased in HM groups compared to comparison groups. In a single trial, IL-1, IL-6, tumor necrosis factor (TNF)-a levels and the number of Tregs in the treatment group significantly decreased, while Th17 levels and the Th17/Treg ratios increased. Conclusion: This study provides a comprehensive and systematic review of the immunological effects of HM in patients with NSCLC. Future studies should explore how the immunological effects of HM correlate with clinical outcomes, such as tumor response and survival rates.PROSPERO registration: CRD42023459.
Collapse
Affiliation(s)
- Youngmin Cho
- Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Hwa-Seung Yoo
- Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
- Seoul Korean Medicine Hospital of Daejeon University, Seoul, Republic of Korea
| | - Soo-Dam Kim
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Mimi Ko
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Han-eum Joo
- Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Soobin Jang
- Daegu Haany University, Gyeongsan, Republic of Korea
| | - Mi-Kyung Jeong
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
2
|
de Jesus JDCR, Murari ASDP, Radloff K, de Moraes RCM, Figuerêdo RG, Pessoa AFM, Rosa-Neto JC, Matos-Neto EM, Alcântara PSM, Tokeshi F, Maximiano LF, Bin FC, Formiga FB, Otoch JP, Seelaender M. Activation of the Adipose Tissue NLRP3 Inflammasome Pathway in Cancer Cachexia. Front Immunol 2021; 12:729182. [PMID: 34630405 PMCID: PMC8495409 DOI: 10.3389/fimmu.2021.729182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Cachexia is a paraneoplastic syndrome that accompanies and compromises cancer treatment, especially in advanced stages, affecting the metabolism and function of several organs. The adipose tissue is the first to respond to the presence of the tumor, contributing to the secretion of factors which drive the systemic inflammation, a hallmark of the syndrome. While inflammation is a defensive innate response, the control mechanisms have been reported to be disrupted in cachexia. On the other hand, little is known about the role of NLRP3 inflammasome in this scenario, a multiprotein complex involved in caspase-1 activation and the processing of the cytokines IL-1β and IL-18. Aim based on the evidence from our previous study with a rodent model of cachexia, we examined the activation of the NLRP3 inflammasome pathway in two adipose tissue depots obtained from patients with colorectal cancer and compared with that another inflammatory pathway, NF-κB. Results For CC we found opposite modulation in ScAT and PtAT for the gene expression of TLR4, Caspase-1 (cachectic group) and for NF-κB p50, NF-κB p65, IL-1β. CD36, expression was decreased in both depots while that of NLRP3 and IL-18 was higher in both tissues, as compared with controls and weight stable patients (WSC). Caspase-1 basal protein levels in the ScAT culture supernatant were higher in WSC and (weight stable patients) CC, when compared to controls. Basal ScAT explant culture medium IL-1β and IL-18 protein content in ScAT supernatant was decreased in the WSC and CC as compared to CTL explants. Conclusions The results demonstrate heterogeneous responses in the activation of genes of the NLRP3 inflammasome pathway in the adipose tissue of patients with cancer cachexia, rendering this pathway a potential target for therapy aiming at decreasing chronic inflammation in cancer.
Collapse
Affiliation(s)
- Joyce de Cassia Rosa de Jesus
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ariene Soares de Pinho Murari
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Katrin Radloff
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ruan Carlos Macêdo de Moraes
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Raquel Galvão Figuerêdo
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Flavia Marçal Pessoa
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - José César Rosa-Neto
- Immunometabolism Laboratory, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Emídio Marques Matos-Neto
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo S M Alcântara
- University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Flavio Tokeshi
- University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Linda Ferreira Maximiano
- University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Fang Chia Bin
- Department of Coloproctology, Santa Casa de São Paulo, São Paulo, Brazil
| | | | - José P Otoch
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Leal LG, Lopes MA, Peres SB, Batista ML. Exercise Training as Therapeutic Approach in Cancer Cachexia: A Review of Potential Anti-inflammatory Effect on Muscle Wasting. Front Physiol 2021; 11:570170. [PMID: 33613297 PMCID: PMC7890241 DOI: 10.3389/fphys.2020.570170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cachexia is a multifactorial inflammatory syndrome with high prevalence in cancer patients. It is characterized by a metabolic chaos culminating in drastic reduction in body weight, mainly due to skeletal muscle and fat depletion. Currently, there is not a standard intervention for cachexia, but it is believed that a dynamic approach should be applied early in the course of the disease to maintain or slow the loss of physical function. The present review sought to explain the different clinical and experimental applications of different models of exercise and their contribution to a better prognosis of the disease. Here the advances in knowledge about the application of physical training in experimental models are elucidated, tests that contribute substantially to elucidate the cellular and biochemical mechanisms of exercise in different ways, as well as clinical trials that present not only the impacts of exercise in front cachexia but also the challenges of its application in clinical practice.
Collapse
Affiliation(s)
- Luana G Leal
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil.,Technological Research Group, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Magno A Lopes
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Sidney B Peres
- Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Miguel L Batista
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil.,Technological Research Group, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| |
Collapse
|
4
|
Sharma AK, Shi X, Isales CM, McGee-Lawrence ME. Endogenous Glucocorticoid Signaling in the Regulation of Bone and Marrow Adiposity: Lessons from Metabolism and Cross Talk in Other Tissues. Curr Osteoporos Rep 2019; 17:438-445. [PMID: 31749087 DOI: 10.1007/s11914-019-00554-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW The development of adiposity in the bone marrow, known as marrow adipose tissue (MAT), is often associated with musculoskeletal frailty. Glucocorticoids, which are a key component of the biological response to stress, affect both bone and MAT. These molecules signal through receptors such as the glucocorticoid receptor (GR), but the role of the GR in regulation of MAT is not yet clear from previous studies. The purpose of this review is to establish and determine the role of GR-mediated signaling in marrow adiposity by comparing and contrasting what is known against other energy-storing tissues like adipose tissue, liver, and muscle, to provide better insight into the regulation of MAT during times of metabolic stress (e.g., dietary challenges, aging). RECENT FINDINGS GR-mediated glucocorticoid signaling is critical for proper storage and utilization of lipids in cells such as adipocytes and hepatocytes and proteolysis in muscle, impacting whole-body composition, energy utilization, and homeostasis through a complex network of tissue cross talk between these systems. Loss of GR signaling in bone promotes increased MAT and decreased bone mass. GR-mediated signaling in the liver, adipose tissue, and muscle is critical for whole-body energy and metabolic homeostasis, and both similarities and differences in GR-mediated GC signaling in MAT as compared with these tissues are readily apparent. It is clear that GC-induced pathways work together through these tissues to affect systemic biology, and understanding the role of bone in these patterns of tissue cross talk may lead to a better understanding of MAT-bone biology that improves treatment strategies for frailty-associated diseases.
Collapse
Affiliation(s)
- Anuj K Sharma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Xingming Shi
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Augusta University, Augusta, GA, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA.
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
5
|
Daas SI, Rizeq BR, Nasrallah GK. Adipose tissue dysfunction in cancer cachexia. J Cell Physiol 2018; 234:13-22. [PMID: 30078199 DOI: 10.1002/jcp.26811] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Cancer cachexia is a complex disorder that is driven by inflammation and metabolic imbalances, resulting in extreme weight loss. Adipose tissue, a main player in cancer cachexia, is an essential metabolic and secretory organ consisting of both white adipose tissue (WAT) and brown adipose tissue. Its secretory products, including adipokines and cytokines, affect a wide variety of central and peripheral organs, such as the skeletal muscle, brain, pancreas, and liver. Therefore, a combination of metabolic alterations, and systemic inflammation dysregulation of both anti-inflammatory and proinflammatory modulators contribute toward adipose tissue wasting in cancer cachexia. Growing evidence suggests that, during cancer cachexia, WAT undergoes a browning process, resulting in increased lipid mobilization and energy expenditure. In this review, we have summarized the characteristics of cancer cachexia and WAT browning. Furthermore, this review describes how adipose tissue becomes inflamed in cancer, shedding light on the combinatorial action of multiple secreted macromolecules, cytokines, hormones, and tumor mediators on adipose tissue dysfunction. We also highlight the inflammatory responses, energy utilization defects, and molecular mechanisms underlying the WAT dysfunction and browning in cancer cachexia. Further, the actual mechanisms behind the loss of adipose tissue are unknown, but have been attributed to increased adipocyte lipolysis, systemic inflammation, and apoptosis or reduced lipogenesis. The understanding of adipose tissue dysfunction in cancer cachexia will hopefully promote the development of new therapeutic approaches to prevent or treat this wasting syndrome.
Collapse
Affiliation(s)
- Sahar I Daas
- Department of Biomedical and Biological Sciences, Hamad Bin Khalifa University, Doha, Qatar.,Reseach Branch, Sidra Medicine, Doha, Qatar
| | - Balsam R Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar.,Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Yang QJ, Zhao JR, Hao J, Li B, Huo Y, Han YL, Wan LL, Li J, Huang J, Lu J, Yang GJ, Guo C. Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J Cachexia Sarcopenia Muscle 2018; 9:71-85. [PMID: 29152916 PMCID: PMC5803608 DOI: 10.1002/jcsm.12246] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cachexia is a multifactorial metabolic syndrome with high morbidity and mortality in patients with advanced cancer. The diagnosis of cancer cachexia depends on objective measures of clinical symptoms and a history of weight loss, which lag behind disease progression and have limited utility for the early diagnosis of cancer cachexia. In this study, we performed a nuclear magnetic resonance-based metabolomics analysis to reveal the metabolic profile of cancer cachexia and establish a diagnostic model. METHODS Eighty-four cancer cachexia patients, 33 pre-cachectic patients, 105 weight-stable cancer patients, and 74 healthy controls were included in the training and validation sets. Comparative analysis was used to elucidate the distinct metabolites of cancer cachexia, while metabolic pathway analysis was employed to elucidate reprogramming pathways. Random forest, logistic regression, and receiver operating characteristic analyses were used to select and validate the biomarker metabolites and establish a diagnostic model. RESULTS Forty-six cancer cachexia patients, 22 pre-cachectic patients, 68 weight-stable cancer patients, and 48 healthy controls were included in the training set, and 38 cancer cachexia patients, 11 pre-cachectic patients, 37 weight-stable cancer patients, and 26 healthy controls were included in the validation set. All four groups were age-matched and sex-matched in the training set. Metabolomics analysis showed a clear separation of the four groups. Overall, 45 metabolites and 18 metabolic pathways were associated with cancer cachexia. Using random forest analysis, 15 of these metabolites were identified as highly discriminating between disease states. Logistic regression and receiver operating characteristic analyses were used to create a distinct diagnostic model with an area under the curve of 0.991 based on three metabolites. The diagnostic equation was Logit(P) = -400.53 - 481.88 × log(Carnosine) -239.02 × log(Leucine) + 383.92 × log(Phenyl acetate), and the result showed 94.64% accuracy in the validation set. CONCLUSIONS This metabolomics study revealed a distinct metabolic profile of cancer cachexia and established and validated a diagnostic model. This research provided a feasible diagnostic tool for identifying at-risk populations through the detection of serum metabolites.
Collapse
Affiliation(s)
- Quan-Jun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiang-Rong Zhao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Hao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Medical Oncology, Benxi Center Hospital, Benxi, 117000, China
| | - Yan Huo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li-Li Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jie Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jinlu Huang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jin Lu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Gen-Jin Yang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
7
|
Mave V, Erlandson KM, Gupte N, Balagopal A, Asmuth DM, Campbell TB, Smeaton L, Kumarasamy N, Hakim J, Santos B, Riviere C, Hosseinipour MC, Sugandhavesa P, Infante R, Pillay S, Cardoso SW, Tripathy S, Mwelase N, Berendes S, Andrade BB, Thomas DL, Bollinger RC, Gupta A. Inflammation and Change in Body Weight With Antiretroviral Therapy Initiation in a Multinational Cohort of HIV-Infected Adults. J Infect Dis 2016; 214:65-72. [PMID: 26962236 DOI: 10.1093/infdis/jiw096] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Both wasting and obesity are associated with inflammation, but the extent to which body weight changes influence inflammation during human immunodeficiency virus infection is unknown. METHODS Among a random virologically suppressed participants of the Prospective Evaluation of Antiretrovirals in Resource-Limited Settings trial, inflammatory markers were measured at weeks 0, 24, and 48 after antiretroviral therapy (ART) initiation. Associations between both baseline and change in body mass index (BMI; calculated as the weight in kilograms divided by the height in meters squared) and changes in inflammation markers were assessed using random effects models. RESULTS Of 246 participants, 27% were overweight/obese (BMI, ≥ 25), and 8% were underweight (BMI < 18.5) at baseline. After 48 weeks, 37% were overweight/obese, and 3% were underweight. While level of many inflammatory markers decreased 48 weeks after ART initiation in the overall group, the decrease in C-reactive protein (CRP) level was smaller in overweight/obese participants (P = .01), and the decreases in both CRP (P = .01) and interleukin 18 (P = .02) levels were smaller in underweight participants. Each 1-unit gain in BMI among overweight/obese participants was associated with a 0.02-log10 increase in soluble CD14 level (P = .05), while each 1-unit BMI gain among underweight participants was associated with a 9.32-mg/L decrease in CRP level (P = .001). CONCLUSIONS Being either overweight or underweight at ART initiation was associated with heightened systemic inflammation. While weight gain among overweight/obese persons predicted increased inflammation, weight gain among underweight persons predicted reduced inflammation.
Collapse
Affiliation(s)
- Vidya Mave
- Johns Hopkins University-BJ Medical College Clinical Research Site, Pune, India Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland
| | | | - Nikhil Gupte
- Johns Hopkins University-BJ Medical College Clinical Research Site, Pune, India Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland
| | - Ashwin Balagopal
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland
| | - David M Asmuth
- Department of Medicine, University California Davis, Sacramento
| | | | - Laura Smeaton
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | - Breno Santos
- Hospital Nossa Senhora de Conceição, Porto Alegre, Brazil
| | | | | | | | | | - Sandy Pillay
- Durban International Clinical Research Site, Durban University of Technology, South Africa
| | - Sandra W Cardoso
- STD/AIDS Clinical Research Laboratory, Instituto de Pesquisa Clinica Evandro Chagas, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Noluthando Mwelase
- Department of Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Sima Berendes
- Malawi College of Medicine-Johns Hopkins University Research Project, Blantyre Liverpool School of Tropical Medicine, United Kingdom
| | - Bruno B Andrade
- Unidade de Medicina Investigativa, Laboratório Integrado de Microbiologia e Imunorregulação, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, and Instituto Brasileiro para a Investigação da Tuberculose, Fundação José Silveira, Salvador, Brazil
| | - David L Thomas
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland
| | - Robert C Bollinger
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland
| | - Amita Gupta
- Johns Hopkins University-BJ Medical College Clinical Research Site, Pune, India Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
8
|
Cancer as a Proinflammatory Environment: Metastasis and Cachexia. Mediators Inflamm 2015; 2015:791060. [PMID: 26508818 PMCID: PMC4609868 DOI: 10.1155/2015/791060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
Abstract
The development of the syndrome of cancer cachexia and that of metastasis are related with a poor prognostic for cancer patients. They are considered multifactorial processes associated with a proinflammatory environment, to which tumour microenvironment and other tissues from the tumour bearing individuals contribute. The aim of the present review is to address the role of ghrelin, myostatin, leptin, HIF, IL-6, TNF-α, and ANGPTL-4 in the regulation of energy balance, tumour development, and tumoural cell invasion. Hypoxia induced factor plays a prominent role in tumour macro- and microenvironment, by modulating the release of proinflammatory cytokines.
Collapse
|
9
|
Lira FS, Neto JCR, Seelaender M. Exercise training as treatment in cancer cachexia. Appl Physiol Nutr Metab 2014; 39:679-86. [DOI: 10.1139/apnm-2013-0554] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cachexia is a wasting syndrome that may accompany a plethora of diseases, including cancer, chronic obstructive pulmonary disease, aids, and rheumatoid arthritis. It is associated with central and systemic increases of pro-inflammatory factors, and with decreased quality of life, response to pharmacological treatment, and survival. At the moment, there is no single therapy able to reverse cachexia many symptoms, which include disruption of intermediary metabolism, endocrine dysfunction, compromised hypothalamic appetite control, and impaired immune function, among other. Growing evidence, nevertheless, shows that chronic exercise, employed as a tool to counteract systemic inflammation, may represent a low-cost, safe alternative for the prevention/attenuation of cancer cachexia. Despite the well-documented capacity of chronic exercise to counteract sustained disease-related inflammation, few studies address the effect of exercise training in cancer cachexia. The aim of the present review was hence to discuss the results of cachexia treatment with endurance training. As opposed to resistance exercise, endurance exercise may be performed devoid of equipment, is well tolerated by patients, and an anti-inflammatory effect may be observed even at low-intensity. The decrease in inflammatory status induced by endurance protocols is paralleled by recovery of various metabolic pathways. The mechanisms underlying the response to the treatment are considered.
Collapse
Affiliation(s)
- Fábio Santos Lira
- Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - José Cesar Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Marília Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Lineu Prestes, 1524, CEP 05508-900, Butantã, São Paulo, SP, Brazil
| |
Collapse
|