1
|
Abramov T, Suwansa-ard S, da Silva PM, Wang T, Dove M, O’Connor W, Parker L, Lovejoy DA, Cummins SF, Elizur A. Teneurin and TCAP Phylogeny and Physiology: Molecular Analysis, Immune Activity, and Transcriptomic Analysis of the Stress Response in the Sydney Rock Oyster ( Saccostrea glomerata) Hemocytes. Front Endocrinol (Lausanne) 2022; 13:891714. [PMID: 35784537 PMCID: PMC9248207 DOI: 10.3389/fendo.2022.891714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Teneurin C-terminal associated peptide (TCAP) is an ancient bioactive peptide that is highly conserved in metazoans. TCAP administration reduces cellular and behavioral stress in vertebrate and urochordate models. There is little information for invertebrates regarding the existence or function of a TCAP. This study used the Sydney rock oyster (SRO) as a molluscan model to characterize an invertebrate TCAP, from molecular gene analysis to its physiological effects associated with hemocyte phagocytosis. We report a single teneurin gene (and 4 teneurin splice variants), which encodes a precursor with TCAP that shares a vertebrate-like motif, and is similar to that of other molluscan classes (gastropod, cephalopod), arthropods and echinoderms. TCAP was identified in all SRO tissues using western blotting at 1-2 different molecular weights (~22 kDa and ~37kDa), supporting precursor cleavage variation. In SRO hemolymph, TCAP was spatially localized to the cytosol of hemocytes, and with particularly high density immunoreactivity in granules. Based on 'pull-down' assays, the SRO TCAP binds to GAPDH, suggesting that TCAP may protect cells from apoptosis under oxidative stress. Compared to sham injection, the intramuscular administration of TCAP (5 pmol) into oysters modulated their immune system by significantly reducing hemocyte phagocytosis under stress conditions (low salinity and high temperature). TCAP administration also significantly reduced hemocyte reactive oxygen species production at ambient conditions and after 48 h stress, compared to sham injection. Transcriptomic hemocyte analysis of stressed oysters administered with TCAP demonstrated significant changes in expression of genes associated with key metabolic, protective and immune functions. In summary, this study established a role for TCAP in oysters through modulation of physiological and molecular functions associated with energy conservation, stress and cellular defense.
Collapse
Affiliation(s)
- Tomer Abramov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Michael Dove
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute, João Pessoa, Para´ıba, Taylors Beach, NSW, Australia
| | - Wayne O’Connor
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute, João Pessoa, Para´ıba, Taylors Beach, NSW, Australia
| | - Laura Parker
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David A. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- *Correspondence: Abigail Elizur,
| |
Collapse
|
2
|
Viet Nguyen T, Ryan LW, Nocillado J, Le Groumellec M, Elizur A, Ventura T. Transcriptomic changes across vitellogenesis in the black tiger prawn (Penaeus monodon), neuropeptides and G protein-coupled receptors repertoire curation. Gen Comp Endocrinol 2020; 298:113585. [PMID: 32822704 DOI: 10.1016/j.ygcen.2020.113585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022]
Abstract
The black tiger prawn (Penaeus monodon) is one of the most commercially important prawn species world-wide, yet there are currently key issues that hinder aquaculture of this species, such as low spawning capacity of captive-reared broodstock females and lack of globally available fully domesticated strains. In this study, we analysed the molecular changes that occur from vitellogenesis to spawning of a fully domesticated population of P.monodon (Madagascar) using four tissues [brain and thoracic ganglia (central nervous system - CNS), eyestalks, antennal gland, and ovary] highlighting differentially expressed genes that could be involved in the sexual maturation. In addition, due to their key role in regulating multiple physiological processes including reproduction, transcripts encoding P.monodon neuropeptides and G protein-coupled receptors (GPCRs) were identified and their expression pattern was assessed. A few neuropeptides and their putative GPCRs which were previously implicated in reproduction are discussed. We identified 573 differentially expressed transcripts between previtellogenic and vitellogenic stages, across the four analysed tissues. Multiple transcripts that have been linked to ovarian maturation were highlighted throughout the study, these include vitellogenin, Wnt, heat shock protein 21, heat shock protein 90, teneurin, Fs(1)M3, hemolymph clottable proteins and some other candidates. Seventy neuropeptide transcripts were also characterized from our de novo assembly. In addition, a hybrid approach that involved clustering and phylogenetics analysis was used to annotate all P. monodon GPCRs, revealing 223 Rhodopsin, 100 Secretin and 27 Metabotropic glutamate GPCRs. Given the key commercial significance of P.monodon and the industry requirements for developing better genomic tools to control reproduction in this species, our findings provide a foundation for future gene-based studies, setting the scene for developing innovative tools for reproduction and/or sexual maturation control in P. monodon.
Collapse
Affiliation(s)
- Tuan Viet Nguyen
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia; Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria 3083, Australia
| | - Luke W Ryan
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Josephine Nocillado
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | | | - Abigail Elizur
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Tomer Ventura
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| |
Collapse
|
3
|
Tessarin GWL, Michalec OM, Torres-da-Silva KR, Da Silva AV, Cruz-Rizzolo RJ, Gonçalves A, Gasparini DC, Horta-Júnior JAC, Ervolino E, Bittencourt JC, Lovejoy DA, Casatti CA. A Putative Role of Teneurin-2 and Its Related Proteins in Astrocytes. Front Neurosci 2019; 13:655. [PMID: 31316338 PMCID: PMC6609321 DOI: 10.3389/fnins.2019.00655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Teneurins are type II transmembrane proteins comprised of four phylogenetically conserved homologs (Ten-1-4) that are highly expressed during neurogenesis. An additional bioactive peptide named teneurin C-terminal-associated peptide (TCAP-1-4) is present at the carboxyl terminal of teneurins. The possible correlation between the Ten/TCAP system and brain injuries has not been explored yet. Thus, this study examined the expression of these proteins in the cerebral cortex after mechanical brain injury. Adult rats were subjected to cerebral cortex injury by needle-insertion lesion and sacrificed at various time points. This was followed by analysis of the lesion area by immunohistochemistry and conventional RT-PCR techniques. Control animals (no brain injury) showed only discrete Ten-2-like immunoreactive pyramidal neurons in the cerebral cortex. In contrast, Ten-2 immunoreactivity was significantly up-regulated in the reactive astrocytes in all brain-injured groups (p < 0.0001) when compared to the control group. Interestingly, reactive astrocytes also showed intense immunoreactivity to LPHN-1, an endogenous receptor for the Ten-2 splice variant named Lasso. Semi-quantitative analysis of Ten-2 and TCAP-2 expression revealed significant increases of both at 48 h, 3 days and 5 days (p < 0.0001) after brain injury compared to the remaining groups. Immortalized cerebellar astrocytes were also evaluated for Ten/TCAP expression and intracellular calcium signaling by fluorescence microscopy after TCAP-1 treatment. Immortalized astrocytes expressed additional Ten/TCAP homologs and exhibited significant increases in intracellular calcium concentrations after TCAP-1 treatment. This study is the first to demonstrate that Ten-2/TCAP-2 and LPHN-1 are upregulated in reactive astrocytes after a mechanical brain injury. Immortalized cerebellar astrocytes expressed Ten/TCAP homologs and TCAP-1 treatment stimulated intracellular calcium signaling. These findings disclose a new functional role of the Ten/TCAP system in astrocytes during tissue repair of the CNS.
Collapse
Affiliation(s)
- Gestter W L Tessarin
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ola M Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kelly R Torres-da-Silva
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - André V Da Silva
- Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,School of Medicine, Federal University of Mato Grosso do Sul (UFMS), Três Lagoas, Brazil
| | - Roelf J Cruz-Rizzolo
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Alaide Gonçalves
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Daniele C Gasparini
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - José A C Horta-Júnior
- Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, São Paulo University (USP), São Paulo, Brazil
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Cláudio A Casatti
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
4
|
Wang Y, Gray DR, Robbins AK, Crowgey EL, Chanock SJ, Greene MH, McGlynn KA, Nathanson K, Turnbull C, Wang Z, Devoto M, Barthold JS. Subphenotype meta-analysis of testicular cancer genome-wide association study data suggests a role for RBFOX family genes in cryptorchidism susceptibility. Hum Reprod 2019; 33:967-977. [PMID: 29618007 DOI: 10.1093/humrep/dey066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Can subphenotype analysis of genome-wide association study (GWAS) data from subjects with testicular germ cell tumor (TGCT) provide insight into cryptorchidism (undescended testis, UDT) susceptibility? SUMMARY ANSWER Suggestive intragenic GWAS signals common to UDT, TGCT case-case and TGCT case-control analyses occur in genes encoding RBFOX RNA-binding proteins (RBPs) and their neurodevelopmental targets. WHAT IS KNOWN ALREADY UDT is a strong risk factor for TGCT, but while genetic risk factors for TGCT are well-known, genetic susceptibility to UDT is poorly understood and appears to be more complex. STUDY DESIGN, SIZE, DURATION We performed a secondary subphenotype analysis of existing GWAS data from the Testicular Cancer Consortium (TECAC) and compared these results with our previously published UDT GWAS data, and with data previously acquired from studies of the fetal rat gubernaculum. PARTICIPANTS/MATERIALS, SETTING, METHODS Studies from the National Cancer Institute (NCI), United Kingdom (UK) and University of Pennsylvania (Penn) that enrolled white subjects were the source of the TGCT GWAS data. We completed UDT subphenotype case-case (TGCT/UDT vs TGCT/non-UDT) and case-control (TGCT/UDT vs control), collectively referred to as 'TECAC' analyses, followed by a meta-analysis comprising 129 TGCT/UDT cases, 1771 TGCT/non-UDT cases, and 3967 unaffected controls. We reanalyzed our UDT GWAS results comprising 844 cases and 2718 controls by mapping suggestive UDT and TECAC signals (defined as P < 0.001) to genes using Ingenuity Pathway Analysis (IPA®). We compared associated pathways and enriched gene categories common to all analyses after Benjamini-Hochberg multiple testing correction, and analyzed transcript levels and protein expression using qRT-PCR and rat fetal gubernaculum confocal imaging, respectively. MAIN RESULTS AND THE ROLE OF CHANCE We found suggestive signals within 19 genes common to all three analyses, including RBFOX1 and RBFOX3, neurodevelopmental paralogs that encode RBPs targeting (U)GCATG-containing transcripts. Ten of the 19 genes participate in neurodevelopment and/or contribute to risk of neurodevelopmental disorders. Experimentally predicted RBFOX gene targets were strongly overrepresented among suggestive intragenic signals for the UDT (117 of 628 (19%), P = 3.5 × 10-24), TECAC case-case (129 of 711 (18%), P = 2.5 × 10-27) and TECAC case-control (117 of 679 (17%), P = 2 × 10-21) analyses, and a majority of the genes common to all three analyses (12 of 19 (63%), P = 3 × 10-9) are predicted RBFOX targets. Rbfox1, Rbfox2 and their encoded proteins are expressed in the rat fetal gubernaculum. Predicted RBFOX targets are also enriched among transcripts differentially regulated in the fetal gubernaculum during normal development (P = 3 × 10-31), in response to in vitro hormonal stimulation (P = 5 × 10-45) and in the cryptorchid LE/orl rat (P = 2 × 10-42). LARGE SCALE DATA GWAS data included in this study are available in the database of Genotypes and Phenotypes (dbGaP accession numbers phs000986.v1.p1 and phs001349.v1p1). LIMITATIONS, REASONS FOR CAUTION These GWAS data did not reach genome-wide significance for any individual analysis. UDT appears to have a complex etiology that also includes environmental factors, and such complexity may require much larger sample sizes than are currently available. The current methodology may also introduce bias that favors false discovery of larger genes. WIDER IMPLICATIONS OF THE FINDINGS Common suggestive intragenic GWAS signals suggest that RBFOX paralogs and other neurodevelopmental genes are potential UDT risk candidates, and potential TGCT susceptibility modifiers. Enrichment of predicted RBFOX targets among differentially expressed transcripts in the fetal gubernaculum additionally suggests a role for this RBP family in regulation of testicular descent. As RBFOX proteins regulate alternative splicing of Calca to generate calcitonin gene-related peptide, a protein linked to development and function of the gubernaculum, additional studies that address the role of these proteins in UDT are warranted. STUDY FUNDING/COMPETING INTEREST(S) The Eunice Kennedy Shriver National Institute for Child Health and Human Development (R01HD060769); National Center for Research Resources (P20RR20173), National Institute of General Medical Sciences (P20GM103464), Nemours Biomedical Research, the Testicular Cancer Consortium (U01CA164947), the Intramural Research Program of the NCI, a support services contract HHSN26120130003C with IMS, Inc., the Abramson Cancer Center at Penn, National Cancer Institute (CA114478), the Institute of Cancer Research, UK and the Wellcome Trust Case-Control Consortium (WTCCC) 2. None of the authors reports a conflict of interest.
Collapse
Affiliation(s)
- Yanping Wang
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Dione R Gray
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Alan K Robbins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Erin L Crowgey
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Katherine Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Zhaoming Wang
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, USA
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia and Departments of Biostatistics and Epidemiology, and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | | |
Collapse
|