1
|
Almeida Campos LAD, Costa Junior SDD, Santos JVDO, Souza ZND, da Silva CES, Cristovão-Silva AC, Brelaz-de-Castro MCA, Pereira VRA, Paiva PMG, Santos Correia MTD, Santos-Magalhães NS, Cavalcanti IMF. Anti-staphylococcal, antibiofilm and trypanocidal activities of CrataBL encapsulated into liposomes: Lectin with potential against infectious diseases. Microb Pathog 2024; 196:107007. [PMID: 39395747 DOI: 10.1016/j.micpath.2024.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The present study aimed to evaluate the anti-staphylococcal, antibiofilm, cytotoxicity and trypanocidal activity, mechanisms of parasite death and immunomodulatory effect of CrataBL encapsulated into liposomes (CrataBL-Lipo). CrataBL-Lipo were prepared by the freeze-thaw technique and characterized. Anti-staphylococcal and antibiofilm activities of CrataBL and CrataBL-Lipo were evaluated against standard and clinical strains of Staphylococcus aureus susceptible and resistant. Thus, broth microdilution method was performed to determine the Minimum Inhibitory Concentration (MIC). Antibiofilm activity at subinhibitory concentrations was evaluated using the crystal violet staining method. Cytotoxicity of CrataBL-Lipo was verified in L929 fibroblasts and J774A.1 macrophages by determining the inhibitory concentration necessary to kill 50 % of cells (IC50). Trypanocidal activities of CrataBL-Lipo was evaluated in Trypanosoma cruzi and the efficacy was expressed as the concentration necessary to kill 50 % of parasites (EC50). The mechanisms of parasite death and immunomodulatory effect of CrataBL-Lipo were evaluated using flow cytometry analysis. CrataBL-Lipo presented Ø of 101.9 ± 1.3 nm (PDI = 0.245), ζ of +33.8 ± 1.3 mV and %EE = 80 ± 0.84 %. CrataBL-Lipo presented anti-staphylococcal activity (MIC = 0.56 mg/mL to 0.72 mg/mL). CrataBL-Lipo inhibited 45.4 %-75.6 % of biofilm formation. No cytotoxicity of CrataBL-Lipo was found (IC50 > 100 mg/L). CrataBL-Lipo presented EC50 of 1.1 mg/L, presenting autophagy, apoptosis and necrosis as death profile. In addition, CrataBL-Lipo reduced the production of IL-10 and TNF-α levels, causing an immunomodulatory effect. CrataBL-Lipo has a therapeutic potential for the treatment of staphylococcal infections and Chagas disease exhibiting a high degree of selectivity for the microorganism, and immunomodulatory properties.
Collapse
Affiliation(s)
| | | | | | - Zion Nascimento de Souza
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil
| | | | | | - Maria Carolina Accioly Brelaz-de-Castro
- Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Immunogenetics Laboratory, Recife, Pernambuco, Brazil; Federal University of Pernambuco (UFPE), Academic Center of Vitória, Vitória de Santo Antão, Pernambuco, Brazil
| | | | | | | | | | - Isabella Macário Ferro Cavalcanti
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil; Federal University of Pernambuco (UFPE), Academic Center of Vitória, Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
2
|
Lie KCM, Bonturi CR, Salu BR, de Oliveira JR, Bonini Galo M, Paiva PMG, Correia MTDS, Oliva MLV. Impairment of SK-MEL-28 Development-A Human Melanoma Cell Line-By the Crataeva tapia Bark Lectin and Its Sequence-Derived Peptides. Int J Mol Sci 2023; 24:10617. [PMID: 37445794 DOI: 10.3390/ijms241310617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Melanoma is difficult to treat with chemotherapy, prompting the need for new treatments. Protease inhibitors have emerged as promising candidates as tumor cell proteases promote metastasis. Researchers have developed a chimeric form of the Bauhinia bauhinioides kallikrein inhibitor, rBbKIm, which has shown negative effects on prostate tumor cell lines DU145 and PC3. Crataeva tapia bark lectin, CrataBL, targets sulfated oligosaccharides in glycosylated proteins and has also demonstrated deleterious effects on prostate and glioblastoma tumor cells. However, neither rBbKIm nor its derived peptides affected the viability of SK-MEL-28, a melanoma cell line, while CrataBL decreased viability by over 60%. Two peptides, Pep. 26 (Ac-Q-N-S-S-L-K-V-V-P-L-NH2) and Pep. 27 (Ac-L-P-V-V-K-L-S-S-N-Q-NH2), were also tested. Pep. 27 suppressed cell migration and induced apoptosis when combined with vemurafenib, while Pep. 26 inhibited cell migration and reduced nitric oxide and the number of viable cells. Vemurafenib, a chemotherapy drug used to treat melanoma, was found to decrease the release of interleukin 8 and PDGF-AB/BB cytokines and potentiated the effects of proteins and peptides in reducing these cytokines. These findings suggest that protease inhibitors may be effective in blocking melanoma cells and highlight the potential of CrataBL and its derived peptides.
Collapse
Affiliation(s)
| | - Camila Ramalho Bonturi
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Bruno Ramos Salu
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | | | - Márcia Bonini Galo
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | | | | | | |
Collapse
|
3
|
Plant Kunitz Inhibitors and Their Interaction with Proteases: Current and Potential Pharmacological Targets. Int J Mol Sci 2022; 23:ijms23094742. [PMID: 35563133 PMCID: PMC9100506 DOI: 10.3390/ijms23094742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The action of proteases can be controlled by several mechanisms, including regulation through gene expression; post-translational modifications, such as glycosylation; zymogen activation; targeting specific compartments, such as lysosomes and mitochondria; and blocking proteolysis using endogenous inhibitors. Protease inhibitors are important molecules to be explored for the control of proteolytic processes in organisms because of their ability to act on several proteases. In this context, plants synthesize numerous proteins that contribute to protection against attacks by microorganisms (fungi and bacteria) and/or invertebrates (insects and nematodes) through the inhibition of proteases in these organisms. These proteins are widely distributed in the plant kingdom, and are present in higher concentrations in legume seeds (compared to other organs and other botanical families), motivating studies on their inhibitory effects in various organisms, including humans. In most cases, the biological roles of these proteins have been assigned based mostly on their in vitro action, as is the case with enzyme inhibitors. This review highlights the structural evolution, function, and wide variety of effects of plant Kunitz protease inhibitors, and their potential for pharmaceutical application based on their interactions with different proteases.
Collapse
|
4
|
Batista FP, de Aguiar RB, Sumikawa JT, Lobo YA, Bonturi CR, Ferreira RDS, Andrade SS, Guedes Paiva PM, dos Santos Correia MT, Vicente CM, Toma L, Sampaio MU, Paschoalin T, Girão MJBC, de Moraes JZ, de Paula CAA, Oliva MLV. Crataeva tapia bark lectin (CrataBL) is a chemoattractant for endothelial cells that targets heparan sulfate and promotes in vitro angiogenesis. Biochimie 2019; 166:173-183. [DOI: 10.1016/j.biochi.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
|
5
|
A Bifunctional Molecule with Lectin and Protease Inhibitor Activities Isolated from Crataeva tapia Bark Significantly Affects Cocultures of Mesenchymal Stem Cells and Glioblastoma Cells. Molecules 2019; 24:molecules24112109. [PMID: 31167364 PMCID: PMC6600636 DOI: 10.3390/molecules24112109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/29/2022] Open
Abstract
Currently available drugs for treatment of glioblastoma, the most aggressive brain tumor, remain inefficient, thus a plethora of natural compounds have already been shown to have antimalignant effects. However, these have not been tested for their impact on tumor cells in their microenvironment-simulated cell models, e.g., mesenchymal stem cells in coculture with glioblastoma cell U87 (GB). Mesenchymal stem cells (MSC) chemotactically infiltrate the glioblastoma microenvironment. Our previous studies have shown that bone-marrow derived MSCs impair U87 growth and invasion via paracrine and cell–cell contact-mediated cross-talk. Here, we report on a plant-derived protein, obtained from Crataeva tapia tree Bark Lectin (CrataBL), having protease inhibitory/lectin activities, and demonstrate its effects on glioblastoma cells U87 alone and their cocultures with MSCs. CrataBL inhibited U87 cell invasion and adhesion. Using a simplified model of the stromal microenvironment, i.e., GB/MSC direct cocultures, we demonstrated that CrataBL, when added in increased concentrations, caused cell cycle arrest and decreased cocultured cells’ viability and proliferation, but not invasion. The cocultured cells’ phenotypes were affected by CrataBL via a variety of secreted immunomodulatory cytokines, i.e., G-CSF, GM-CSF, IL-6, IL-8, and VEGF. We hypothesize that CrataBL plays a role by boosting the modulatory effects of MSCs on these glioblastoma cell lines and thus the effects of this and other natural lectins and/or inhibitors would certainly be different in the tumor microenvironment compared to tumor cells alone. We have provided clear evidence that it makes much more sense testing these potential therapeutic adjuvants in cocultures, mimicking heterogeneous tumor–stroma interactions with cancer cells in vivo. As such, CrataBL is suggested as a new candidate to approach adjuvant treatment of this deadly tumor.
Collapse
|
6
|
The Plant Proteinase Inhibitor CrataBL Plays a Role in Controlling Asthma Response in Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9274817. [PMID: 30364003 PMCID: PMC6188594 DOI: 10.1155/2018/9274817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 01/08/2023]
Abstract
Background. CrataBL is a protein isolated from Crataeva tapia bark. It has been shown to exhibit several biological properties, including anti-inflammatory, analgesic, antitumor, and insecticidal activities. There are no studies evaluating the role of CrataBL in experimental asthma models. Aim. To evaluate the effects of CrataBL on lung mechanics, inflammation, remodeling, and oxidative stress activation of mice with allergic pulmonary inflammation. Materials and Methods. BALB/c mice (6-7 weeks old, 25-30g) were divided into four groups: nonsensitized and nontreated mice (C group, n=8); ovalbumin- (OVA-) sensitized and nontreated mice (OVA group, n=8); nonsensitized and CrataBL-treated mice (C+CR group, n=8); OVA-sensitized and CrataBL-treated mice (OVA+CR group, n=8). We evaluated hyperresponsiveness to methacholine, bronchoalveolar lavage fluid (BALF), pulmonary inflammation, extracellular matrix remodeling, and oxidative stress markers. Results. CrataBL treatment in OVA-sensitized mice (OVA+CR group) attenuated the following variables compared to OVA-sensitized mice without treatment (OVA group) (all p<0.05): (1) respiratory system resistance (Rrs) and elastance (Ers) after methacholine challenge; (2) total cells, macrophages, polymorphonuclear cells, and lymphocytes in BALF; (3) eosinophils and volume fraction of collagen and elastic fibers in the airway and alveolar wall according to histopathological and morphometry analysis; (4) IL-4-, IL-5-, IL-13-, IL-17-, IFN-γ-, MMP-9-, TIMP-1-, TGF-β-, iNOS-, and NF-kB-positive cells and volume of 8-iso-PGF2α in airway and alveolar septa according to immunohistochemistry; and (5) IL-4, IL-5, and IFN-γ according to an ELISA. Conclusion. CrataBL contributes to the control of hyperresponsiveness, pulmonary inflammation, extracellular matrix remodeling, and oxidative stress responses in an animal model of chronic allergic pulmonary inflammation.
Collapse
|
7
|
da Cunha AL, Aguiar JA, Correa da Silva FS, Michelacci YM. Do chondroitin sulfates with different structures have different activities on chondrocytes and macrophages? Int J Biol Macromol 2017; 103:1019-1031. [PMID: 28536017 DOI: 10.1016/j.ijbiomac.2017.05.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 01/22/2023]
|
8
|
Impact of high glucose and AGEs on cultured kidney-derived cells. Effects on cell viability, lysosomal enzymes and effectors of cell signaling pathways. Biochimie 2017; 135:137-148. [DOI: 10.1016/j.biochi.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
|
9
|
Nunes NNS, Ferreira RS, Silva-Lucca RA, de Sá LFR, de Oliveira AEA, Correia MTDS, Paiva PMG, Wlodawer A, Oliva MLV. Potential of the Lectin/Inhibitor Isolated from Crataeva tapia Bark (CrataBL) for Controlling Callosobruchus maculatus Larva Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10431-6. [PMID: 26568149 PMCID: PMC6290478 DOI: 10.1021/acs.jafc.5b03634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Callosobruchus maculatus is an important predator of cowpeas. Due to infestation during storage, this insect affects the quality of seed and crop yield. This study aimed to investigate the effects of CrataBL, a multifunction protein isolated from Crataeva tapia bark, on C. maculatus larva development. The protein, which is stable even in extreme pH conditions, showed toxic activity, reducing the larval mass 45 and 70% at concentrations of 0.25 and 1.0% (w/w), respectively. Acting as an inhibitor, CrataBL decreased by 39% the activity of cysteine proteinases from larval gut. Conversely, the activity of serine proteinases was increased about 8-fold. The toxic properties of CrataBL may also be attributed to its capacity of binding to glycoproteins or glycosaminoglycans. Such binding interferes with larval metabolism, because CrataBL-FITC was found in the fat body, Malpighian tubules, and feces of larvae. These results demonstrate the potential of this protein for controlling larva development.
Collapse
Affiliation(s)
- Natalia N. S. Nunes
- Departamento de Bioquímica, Universidade Federal de São Paulo-UNIFESP-EPM, 04044-020, São Paulo-SP, Brazil
| | - Rodrigo S. Ferreira
- Departamento de Bioquímica, Universidade Federal de São Paulo-UNIFESP-EPM, 04044-020, São Paulo-SP, Brazil
| | - Rosemeire A. Silva-Lucca
- Centro de Engenharia e Ciências Exatas, Universidade Estadual do Oeste do Paraná, Toledo, Paraná, Brazil
| | - Leonardo F. R. de Sá
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia-CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes- RJ, Brazil
| | - Antônia Elenir A. de Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia-CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes- RJ, Brazil
| | | | | | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Maria Luiza V. Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo-UNIFESP-EPM, 04044-020, São Paulo-SP, Brazil
| |
Collapse
|
10
|
Oliva LV, Almeida-Reis R, Theodoro-Junior O, Oliveira BM, Leick EA, Prado CM, Brito MV, Correia MTDS, Paiva PM, Martins MA, Oliva MLV, Tibério IF. A plant proteinase inhibitor from Crataeva tapia (CrataBL) attenuates elastase-induced pulmonary inflammatory, remodeling, and mechanical alterations in mice. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|