1
|
Gnanagobal H, Cao T, Hossain A, Vasquez I, Chakraborty S, Chukwu-Osazuwa J, Boyce D, Espinoza MJ, García-Angulo VA, Santander J. Role of riboflavin biosynthesis gene duplication and transporter in Aeromonas salmonicida virulence in marine teleost fish. Virulence 2023; 14:2187025. [PMID: 36895132 PMCID: PMC10012899 DOI: 10.1080/21505594.2023.2187025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Active flavins derived from riboflavin (vitamin B2) are essential for life. Bacteria biosynthesize riboflavin or scavenge it through uptake systems, and both mechanisms may be present. Because of riboflavin's critical importance, the redundancy of riboflavin biosynthetic pathway (RBP) genes might be present. Aeromonas salmonicida, the aetiological agent of furunculosis, is a pathogen of freshwater and marine fish, and its riboflavin pathways have not been studied. This study characterized the A. salmonicida riboflavin provision pathways. Homology search and transcriptional orchestration analysis showed that A. salmonicida has a main riboflavin biosynthetic operon that includes ribD, ribE1, ribBA, and ribH genes. Outside the main operon, putative duplicated genes ribA, ribB and ribE, and a ribN riboflavin importer encoding gene, were found. Monocistronic mRNA ribA, ribB and ribE2 encode for their corresponding functional riboflavin biosynthetic enzyme. While the product of ribBA conserved the RibB function, it lacked the RibA function. Likewise, ribN encodes a functional riboflavin importer. Transcriptomics analysis indicated that external riboflavin affected the expression of a relatively small number of genes, including a few involved in iron metabolism. ribB was downregulated in response to external riboflavin, suggesting negative feedback. Deletion of ribA, ribB and ribE1 showed that these genes are required for A. salmonicida riboflavin biosynthesis and virulence in Atlantic lumpfish (Cyclopterus lumpus). A. salmonicida riboflavin auxotrophic attenuated mutants conferred low protection to lumpfish against virulent A. salmonicida. Overall, A. salmonicida has multiple riboflavin endowment forms, and duplicated riboflavin provision genes are critical for A. salmonicida infection.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Canada
| | - María Jesus Espinoza
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Antonio García-Angulo
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Canada
| |
Collapse
|
2
|
Huang Z, Wang X, Li N, Song F, Zhou J. Systematic engineering of Escherichia coli for efficient production of nicotinamide riboside from nicotinamide and 3-cyanopyridine. BIORESOURCE TECHNOLOGY 2023; 377:128953. [PMID: 36963699 DOI: 10.1016/j.biortech.2023.128953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Nicotinamide riboside (NR), a key biosynthetic precursor of NAD+, is receiving increasing attention because of its role. In this study, a whole-cell catalysis method to efficiently synthesize NR was established. First, the performance of 5'-nucleotidase (UshA) from Escherichia coli was confirmed to have high catalytic activity to synthesize NR. Then, the endogenous NR degradation pathway was detected, and the genes (rihA, rihB, and rihC) involved in NR degradation were knocked out, which enabled NR biosynthesis. In addition, the important role of the signal peptide of UshA in NR transport had been confirmed. Subsequently, nitrile hydratase was introduced to achieve the conversion of 3-cyanopyridine to NR. Finally, the NR titer reached 25.6 and 29.8 g/L with nicotinamide and 3-cyanopyridine, respectively, as substrates in a 5-L bioreactor, the efficient biosynthesis of NR in E. coli by using nicotinamide and 3-cyanopyridine.
Collapse
Affiliation(s)
- Zhongshi Huang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ning Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Fuqiang Song
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Peluso AA, Lundgaard AT, Babaei P, Mousovich-Neto F, Rocha AL, Damgaard MV, Bak EG, Gnanasekaran T, Dollerup OL, Trammell SAJ, Nielsen TS, Kern T, Abild CB, Sulek K, Ma T, Gerhart-Hines Z, Gillum MP, Arumugam M, Ørskov C, McCloskey D, Jessen N, Herrgård MJ, Mori MAS, Treebak JT. Oral supplementation of nicotinamide riboside alters intestinal microbial composition in rats and mice, but not humans. NPJ AGING 2023; 9:7. [PMID: 37012386 PMCID: PMC10070358 DOI: 10.1038/s41514-023-00106-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.
Collapse
Affiliation(s)
- A Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agnete T Lundgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Parizad Babaei
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Felippe Mousovich-Neto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Andréa L Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mads V Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie G Bak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole L Dollerup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline B Abild
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- BioInnovation Institute, Copenhagen, Denmark
| | - Marcelo A S Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Panchapakesan SSS, Corey L, Malkowski SN, Higgs G, Breaker RR. A second riboswitch class for the enzyme cofactor NAD . RNA (NEW YORK, N.Y.) 2021; 27:99-105. [PMID: 33087526 PMCID: PMC7749635 DOI: 10.1261/rna.077891.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/19/2020] [Indexed: 06/01/2023]
Abstract
A bacterial noncoding RNA motif almost exclusively associated with pnuC genes was uncovered using comparative sequence analysis. Some PnuC proteins are known to transport nicotinamide riboside (NR), which is a component of the ubiquitous and abundant enzyme cofactor nicotinamide adenine dinucleotide (NAD+). Thus, we speculated that the newly found "pnuC motif" RNAs might function as aptamers for a novel class of NAD+-sensing riboswitches. RNA constructs that encompass the conserved nucleotides and secondary structure features that define the motif indeed selectively bind NAD+, nicotinamide mononucleotide (NMN), and NR. Mutations that disrupt strictly conserved nucleotides of the aptamer also disrupt ligand binding. These bioinformatic and biochemical findings indicate that pnuC motif RNAs are likely members of a second riboswitch class that regulates gene expression in response to NAD+ binding.
Collapse
Affiliation(s)
- Shanker S S Panchapakesan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Lukas Corey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Sarah N Malkowski
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Gadareth Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
5
|
Yamada N, Saito C, Kano H, Fukuuchi T, Yamaoka N, Kaneko K, Asami Y. Lactobacillus gasseri PA-3 directly incorporates purine mononucleotides and utilizes them for growth. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 41:221-230. [PMID: 32954967 DOI: 10.1080/15257770.2020.1815768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactococcus lactis has been reported unable to directly incorporate mononucleotides but instead requires their external dephosphorylation by nucleotidases to the corresponding nucleosides prior to their incorporation. Although Lactobacillus gasseri PA-3 (PA-3), a strain of lactic acid bacteria, has been found to incorporate purine mononucleotides such as adenosine 5'-monophosphate (AMP), it remains unclear whether these bacteria directly incorporate these mononucleotides or incorporate them after dephosphorylation to the corresponding nucleosides. This study evaluated whether PA-3 incorporated radioactively-labeled mononucleotides in the presence or absence of the 5'-nucleotidase inhibitor α,β-methylene ADP (APCP). PA-3 took up 14C-AMP in the presence of APCP, as well as incorporating 32P-AMP. Furthermore, radioactivity was detected in the RNA/DNA of bacterial cells cultured in the presence of 32P-AMP. Taken together, these findings indicated that PA-3 incorporated purine mononucleotides directly rather than after their dephosphorylation to purine nucleosides and that PA-3 utilizes these purine mononucleotides in the synthesis of RNA and DNA. Although additional studies are required to identify purine mononucleotide transporters in PA-3, this study is the first to show that some lactic acid bacteria directly incorporate purine mononucleotides and use them for growth.
Collapse
Affiliation(s)
- N Yamada
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan.,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - C Saito
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan.,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - H Kano
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan.,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - T Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - N Yamaoka
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - K Kaneko
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - Y Asami
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
6
|
Structural and Functional Characterization of NadR from Lactococcus lactis. Molecules 2020; 25:molecules25081940. [PMID: 32331317 PMCID: PMC7221760 DOI: 10.3390/molecules25081940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/02/2022] Open
Abstract
NadR is a bifunctional enzyme that converts nicotinamide riboside (NR) into nicotinamide mononucleotide (NMN), which is then converted into nicotinamide adenine dinucleotide (NAD). Although a crystal structure of the enzyme from the Gram-negative bacterium Haemophilus influenzae is known, structural understanding of its catalytic mechanism remains unclear. Here, we purified the NadR enzyme from Lactococcus lactis and established an assay to determine the combined activity of this bifunctional enzyme. The conversion of NR into NAD showed hyperbolic dependence on the NR concentration, but sigmoidal dependence on the ATP concentration. The apparent cooperativity for ATP may be explained because both reactions catalyzed by the bifunctional enzyme (phosphorylation of NR and adenylation of NMN) require ATP. The conversion of NMN into NAD followed simple Michaelis-Menten kinetics for NMN, but again with the sigmoidal dependence on the ATP concentration. In this case, the apparent cooperativity is unexpected since only a single ATP is used in the NMN adenylyltransferase catalyzed reaction. To determine the possible structural determinants of such cooperativity, we solved the crystal structure of NadR from L. lactis (NadRLl). Co-crystallization with NAD, NR, NMN, ATP, and AMP-PNP revealed a ‘sink’ for adenine nucleotides in a location between two domains. This sink could be a regulatory site, or it may facilitate the channeling of substrates between the two domains.
Collapse
|
7
|
Nosaka K, Uchiyama R, Tadano K, Endo Y, Hayashi M, Konno H, Mimuro H. Thiamin transport in Helicobacter pylori lacking the de novo synthesis of thiamin. MICROBIOLOGY-SGM 2019; 165:224-232. [PMID: 30620266 DOI: 10.1099/mic.0.000765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori lacks the genes involved in the de novo synthesis of thiamin, and is therefore a thiamin auxotroph. The PnuT transporter, a member of the Pnu transporter family, mediates the uptake of thiamin across the membrane. In the genome of H. pylori, the pnuT gene is clustered with the thiamin pyrophosphokinase gene thi80. In this study, we found that [3H]thiamin is incorporated into the H. pylori SS1 strain via facilitated diffusion with a Km value of 28 µM. The incorporation of radioactive thiamin was inhibited to some extent by 2-methyl-4-amino-5-hydroxymethylpyrimidine or pyrithiamine, but was largely unaffected by thiamin phosphate or thiamin pyrophosphate. RT-PCR analysis demonstrated that the pnuT and thi80 genes are cotranscribed as a single transcript. The estimated Km value for thiamin in the thiamin pyrophosphokinase activity exerted by the recombinant Thi80 protein was 0.40 µM, which is much lower than the Km value of thiamin transport in H. pylori cells. These findings suggested that the incorporated thiamin from the environment is efficiently trapped by pyrophosphorylation to make the transport directional. In addition, the thiamin transport activity in the pnuT-deficient H. pylori strain was less than 20 % of that in the wild-type strain at extracellular thiamin concentration of 1 µM, but the incorporated scintillation signals of the pnuT-deficient strain with 100 nM [3H]thiamin were nearly at the background level. We also found that the pnuT-deficient strain required 100-times more thiamin to achieve growth equal to that of the wild-type. These findings reflect the presence of multiple routes for entry of thiamin into H. pylori, and PnuT is likely responsible for the high-affinity thiamin transport and serves as a target for antimicrobial agents against H. pylori.
Collapse
Affiliation(s)
- Kazuto Nosaka
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Ryosuke Uchiyama
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Kyo Tadano
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Yurina Endo
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Maria Hayashi
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Hiroyuki Konno
- 2Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hitomi Mimuro
- 3Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,4Division of Bacteriology, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Bali AP, Genee HJ, Sommer MOA. Directed Evolution of Membrane Transport Using Synthetic Selections. ACS Synth Biol 2018; 7:789-793. [PMID: 29474058 DOI: 10.1021/acssynbio.7b00407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Understanding and engineering solute transporters is important for metabolic engineering and the development of therapeutics. However, limited available experimental data on membrane transporters makes sequence-function relationships complex to predict. Here we apply ligand-responsive biosensor systems that enable selective growth of E. coli cells only if they functionally express an importer that is specific to the biosensor ligand. Using this system in a directed evolution framework, we successfully engineer the specificity of nicotinamide riboside transporters, PnuC, to accept thiamine as a substrate. Our results provide insight into the molecular determinants of substrate recognition of the PnuC transporter family and demonstrate how synthetic biology can be deployed to engineer the substrate spectrum of small molecule transporters.
Collapse
Affiliation(s)
- Anne P. Bali
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Biosyntia
ApS, Fruebjergvej 3, DK-2100, Østerbro, Denmark
| | - Hans J. Genee
- Biosyntia
ApS, Fruebjergvej 3, DK-2100, Østerbro, Denmark
| | - Morten O. A. Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Jaehme M, Singh R, Garaeva AA, Duurkens RH, Slotboom DJ. PnuT uses a facilitated diffusion mechanism for thiamine uptake. J Gen Physiol 2017; 150:41-50. [PMID: 29203477 PMCID: PMC5749112 DOI: 10.1085/jgp.201711850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Membrane transporters of the bacterial pyridine nucleotide uptake (Pnu) family mediate the uptake of various B-type vitamins. For example, the PnuT transporters have specificity for vitamin B1 (thiamine). It has been hypothesized that Pnu transporters are facilitators that allow passive transport of the vitamin substrate across the membrane. Metabolic trapping by phosphorylation would then lead to accumulation of the transported substrates in the cytoplasm. However, experimental evidence for such a transport mechanism is lacking. Here, to determine the mechanism of thiamine transport, we purify PnuTSw from Shewanella woodyi and reconstitute it in liposomes to determine substrate binding and transport properties. We show that the electrochemical gradient of thiamine solely determines the direction of transport, consistent with a facilitated diffusion mechanism. Further, PnuTSw can bind and transport thiamine as well as the thiamine analogues pyrithiamine and oxythiamine, but does not recognize the phosphorylated derivatives thiamine monophosphate and thiamine pyrophosphate as substrates, consistent with a metabolic trapping mechanism. Guided by the crystal structure of the homologous nicotinamide riboside transporter PnuC, we perform mutagenesis experiments, which reveal residues involved in substrate binding and gating. The facilitated diffusion mechanism of transport used by PnuTSw contrasts sharply with the active transport mechanisms used by other bacterial thiamine transporters.
Collapse
Affiliation(s)
- Michael Jaehme
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Rajkumar Singh
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Alisa A Garaeva
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Ria H Duurkens
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Dirk-Jan Slotboom
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Underlying mechanisms for syntrophic metabolism of essential enzyme cofactors in microbial communities. ISME JOURNAL 2017; 11:1434-1446. [PMID: 28186498 DOI: 10.1038/ismej.2017.2] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/11/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Many microorganisms are unable to synthesize essential B vitamin-related enzyme cofactors de novo. The underlying mechanisms by which such microbes survive in multi-species communities are largely unknown. We previously reported the near-complete genome sequence of two ~18-member unicyanobacterial microbial consortia that maintain stable membership on defined medium lacking vitamins. Here we have used genome analysis and growth studies on isolates derived from the consortia to reconstruct pathways for biogenesis of eight essential cofactors and predict cofactor usage and precursor exchange in these communities. Our analyses revealed that all but the two Halomonas and cyanobacterial community members were auxotrophic for at least one cofactor. We also observed a mosaic distribution of salvage routes for a variety of cofactor precursors, including those produced by photolysis. Potentially bidirectional transporters were observed to be preferentially in prototrophs, suggesting a mechanism for controlled precursor release. Furthermore, we found that Halomonas sp. do not require cobalamin nor control its synthesis, supporting the hypothesis that they overproduce and export vitamins. Collectively, these observations suggest that the consortia rely on syntrophic metabolism of cofactors as a survival strategy for optimization of metabolic exchange within a shared pool of micronutrients.
Collapse
|
11
|
Kang I, Kim S, Islam MR, Cho JC. The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures. Sci Rep 2017; 7:42252. [PMID: 28186143 PMCID: PMC5301498 DOI: 10.1038/srep42252] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
The acI lineage of the phylum Actinobacteria is the most abundant bacterial group in most freshwater lakes. However, due to difficulties in laboratory cultivation, only two mixed cultures and some incomplete single-amplified or metagenome-derived genomes have been reported for the lineage. Here, we report the initial cultivation and complete genome sequences of four novel strains of the acI lineage from the tribes acI-A1, -A4, -A7, and -C1. The acI strains, initially isolated by dilution-to-extinction culturing, eventually failed to be maintained as axenic cultures. However, the first complete genomes of the acI lineage were successfully obtained from these initial cultures through whole genome amplification applied to more than hundreds of cultured acI cells. The genome sequences exhibited features of genome streamlining and showed that the strains are aerobic chemoheterotrophs sharing central metabolic pathways, with some differences among tribes that may underlie niche diversification within the acI lineage. Actinorhodopsin was found in all strains, but retinal biosynthesis was complete in only A1 and A4 tribes.
Collapse
Affiliation(s)
- Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Suhyun Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Md Rashedul Islam
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
12
|
Abstract
Riboflavin derivatives are essential cofactors for a myriad of flavoproteins. In bacteria, flavins importance extends beyond their role as intracellular protein cofactors, as secreted flavins are a key metabolite in a variety of physiological processes. Bacteria obtain riboflavin through the endogenous riboflavin biosynthetic pathway (RBP) or by the use of importer proteins. Bacteria frequently encode multiple paralogs of the RBP enzymes and as for other micronutrient supply pathways, biosynthesis and uptake functions largely coexist. It is proposed that bacteria shut down biosynthesis and would rather uptake riboflavin when the vitamin is environmentally available. Recently, the overlap of riboflavin provisioning elements has gained attention and the functions of duplicated paralogs of RBP enzymes started to be addressed. Results point towards the existence of a modular structure in the bacterial riboflavin supply pathways. Such structure uses subsets of RBP genes to supply riboflavin for specific functions. Given the importance of riboflavin in intra and extracellular bacterial physiology, this complex array of riboflavin provision pathways may have developed to contend with the various riboflavin requirements. In riboflavin-prototrophic bacteria, riboflavin transporters could represent a module for riboflavin provision for particular, yet unidentified processes, rather than substituting for the RBP as usually assumed.
Collapse
Affiliation(s)
- Víctor Antonio García-Angulo
- a Microbiology and Mycology Program, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| |
Collapse
|
13
|
Functional mining of transporters using synthetic selections. Nat Chem Biol 2016; 12:1015-1022. [DOI: 10.1038/nchembio.2189] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
|
14
|
Jaehme M, Guskov A, Slotboom DJ. Pnu Transporters: Ain't They SWEET? Trends Biochem Sci 2015; 41:117-118. [PMID: 26692123 DOI: 10.1016/j.tibs.2015.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Michael Jaehme
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4 Groningen, 9747 AG, The Netherlands
| | - Albert Guskov
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4 Groningen, 9747 AG, The Netherlands
| | - Dirk Jan Slotboom
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4 Groningen, 9747 AG, The Netherlands.
| |
Collapse
|
15
|
Feng L, Frommer WB. Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem Sci 2015; 40:480-6. [PMID: 26071195 DOI: 10.1016/j.tibs.2015.05.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022]
Abstract
SemiSWEETs and SWEETs have emerged as unique sugar transporters. First discovered in plants with the help of fluorescent biosensors, homologs exist in all kingdoms of life. Bacterial and plant homologs transport hexoses and sucrose, whereas animal SWEETs transport glucose. Prokaryotic SemiSWEETs are small and comprise a parallel homodimer of an approximately 100 amino acid-long triple helix bundle (THB). Duplicated THBs are fused to create eukaryotic SWEETs in a parallel orientation via an inversion linker helix, producing a similar configuration to that of SemiSWEET dimers. Structures of four SemiSWEETs have been resolved in three states: open outside, occluded, and open inside, indicating alternating access. As we discuss here, these atomic structures provide a basis for exploring the evolution of structure-function relations in this new class of transporters.
Collapse
Affiliation(s)
- Liang Feng
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Wolf B Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St, Stanford, CA 94305, USA.
| |
Collapse
|