1
|
Das N, de Almeida LGN, Derakhshani A, Young D, Mehdinejadiani K, Salo P, Rezansoff A, Jay GD, Sommerhoff CP, Schmidt TA, Krawetz R, Dufour A. Tryptase β regulation of joint lubrication and inflammation via proteoglycan-4 in osteoarthritis. Nat Commun 2023; 14:1910. [PMID: 37024468 PMCID: PMC10079686 DOI: 10.1038/s41467-023-37598-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
PRG4 is an extracellular matrix protein that maintains homeostasis through its boundary lubricating and anti-inflammatory properties. Altered expression and function of PRG4 have been associated with joint inflammatory diseases, including osteoarthritis. Here we show that mast cell tryptase β cleaves PRG4 in a dose- and time-dependent manner, which was confirmed by silver stain gel electrophoresis and mass spectrometry. Tryptase-treated PRG4 results in a reduction of lubrication. Compared to full-length, cleaved PRG4 further activates NF-κB expression in cells overexpressing TLR2, -4, and -5. In the destabilization of the medial meniscus model of osteoarthritis in rat, tryptase β and PRG4 colocalize at the site of injury in knee cartilage and is associated with disease severity. When human primary synovial fibroblasts from male osteoarthritis patients or male healthy subjects treated with tryptase β and/or PRG4 are subjected to a quantitative shotgun proteomics and proteome changes are characterized, it further supports the role of NF-κB activation. Here we show that tryptase β as a modulator of joint lubrication in osteoarthritis via the cleavage of PRG4.
Collapse
Affiliation(s)
- Nabangshu Das
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luiz G N de Almeida
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Afshin Derakhshani
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel Young
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kobra Mehdinejadiani
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Salo
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander Rezansoff
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, USA
| | - Christian P Sommerhoff
- Institute of Medical Education and Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Tannin A Schmidt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Antoine Dufour
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Xu YY, Shen HB, Murphy RF. Learning complex subcellular distribution patterns of proteins via analysis of immunohistochemistry images. Bioinformatics 2020; 36:1908-1914. [PMID: 31722369 DOI: 10.1093/bioinformatics/btz844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Systematic and comprehensive analysis of protein subcellular location as a critical part of proteomics ('location proteomics') has been studied for many years, but annotating protein subcellular locations and understanding variation of the location patterns across various cell types and states is still challenging. RESULTS In this work, we used immunohistochemistry images from the Human Protein Atlas as the source of subcellular location information, and built classification models for the complex protein spatial distribution in normal and cancerous tissues. The models can automatically estimate the fractions of protein in different subcellular locations, and can help to quantify the changes of protein distribution from normal to cancer tissues. In addition, we examined the extent to which different annotated protein pathways and complexes showed similarity in the locations of their member proteins, and then predicted new potential proteins for these networks. AVAILABILITY AND IMPLEMENTATION The dataset and code are available at: www.csbio.sjtu.edu.cn/bioinf/complexsubcellularpatterns. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ying-Ying Xu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Robert F Murphy
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Enomoto H, Nakamura H, Nishikawa H, Nishiguchi S, Iijima H. Hepatoma-Derived Growth Factor: An Overview and Its Role as a Potential Therapeutic Target Molecule for Digestive Malignancies. Int J Mol Sci 2020; 21:ijms21124216. [PMID: 32545762 PMCID: PMC7352308 DOI: 10.3390/ijms21124216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatoma-derived growth factor (HDGF) was identified in research seeking to find a novel growth factor for hepatoma cells. Subsequently, four HDGF-related proteins were identified, and these proteins are considered to be members of a new gene family. HDGF has a growth-stimulating role, an angiogenesis-inducing role, and a probable anti-apoptotic role. HDGF is ubiquitously expressed in non-cancerous tissues, and participates in organ development and in the healing of damaged tissues. In addition, the high expression of HDGF was reported to be closely associated with unfavorable clinical outcomes in several malignant diseases. Thus, HDGF is considered to contribute to the development and progression of malignant disease. We herein provide a brief overview of the factor and its functions in relation to benign and malignant cells. We also describe its possible role as a target molecule for digestive malignancies.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
- Correspondence: ; Tel.: +81-798-45-6111
| | - Hideji Nakamura
- Department of Gastroenterology and Hepatology, Nippon Life Hospital, Osaka 550-0006, Japan;
| | - Hiroki Nishikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Kano General Hospital, Oska 531-0041, Japan;
| | - Hiroko Iijima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
| |
Collapse
|
4
|
Nüße J, Blumrich EM, Mirastschijski U, Kappelmann L, Kelm S, Dietz F. Intra- or extra-exosomal secretion of HDGF isoforms: the extraordinary function of the HDGF-A N-terminal peptide. Biol Chem 2017; 398:793-811. [DOI: 10.1515/hsz-2016-0315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
Abstract
Hepatoma-derived growth factor (HDGF) is a protein with diverse intracellular functions. Moreover, after non-conventional secretion, extracellular HDGF is able to influence different signaling pathways, leading for example to induction of processes like epithelial-mesenchymal transition (EMT) and cell migration. Intriguingly, in recent proteome studies, HDGF was also found secreted by special microvesicles called exosomes. Recently, we demonstrated the existence of two new HDGF isoforms (B and C). These isoforms are involved in different cellular processes than HDGF-A. Along this line, in the present study we discovered that full length HDGF-A clearly is located inside of exosomes, whereas the isoforms HDGF-B and HDGF-C are found exclusively on the outer surface. Furthermore, while HDGF-B and HDGF-C seem to use exosomes mediated pathway exclusively, HDGF-A was found also as unbound protein in the conditioned media. The new finding of an intra- or extra-exosomal localisation of protein splice variants opens a fascinating new perspective concerning functional diversity of HDGF isoforms. Dysregulation of HDGF expression during cancer development and tumor progression is a commonly known fact. With our new findings, unraveling the potential functional impact according to physiological versus pathophysiologically altered levels and compositions of intra- and extra-exosomal HDGF has to be addressed in future studies.
Collapse
|