1
|
Wu K, Shieh JS, Qin L, Guo JJ. Mitochondrial mechanisms in the pathogenesis of chronic inflammatory musculoskeletal disorders. Cell Biosci 2024; 14:76. [PMID: 38849951 PMCID: PMC11162051 DOI: 10.1186/s13578-024-01259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Chronic inflammatory musculoskeletal disorders characterized by prolonged muscle inflammation, resulting in enduring pain and diminished functionality, pose significant challenges for the patients. Emerging scientific evidence points to mitochondrial malfunction as a pivotal factor contributing to these ailments. Mitochondria play a critical role in powering skeletal muscle activity, but in the context of persistent inflammation, disruptions in their quantity, configuration, and performance have been well-documented. Various disturbances, encompassing alterations in mitochondrial dynamics (such as fission and fusion), calcium regulation, oxidative stress, biogenesis, and the process of mitophagy, are believed to play a central role in the progression of these disorders. Additionally, unfolded protein responses and the accumulation of fatty acids within muscle cells may adversely affect the internal milieu, impairing the equilibrium of mitochondrial functioning. The structural discrepancies between different mitochondrial subsets namely, intramyofibrillar and subsarcolemmal mitochondria likely impact their metabolic capabilities and susceptibility to inflammatory influences. The release of signals from damaged mitochondria is known to incite inflammatory responses. Intriguingly, migrasomes and extracellular vesicles serve as vehicles for intercellular transfer of mitochondria, aiding in the removal of impaired mitochondria and regulation of inflammation. Viral infections have been implicated in inducing stress on mitochondria. Prolonged dysfunction of these vital organelles sustains oxidative harm, metabolic irregularities, and heightened cytokine release, impeding the body's ability to repair tissues. This review provides a comprehensive analysis of advancements in understanding changes in the intracellular environment, mitochondrial architecture and distribution, biogenesis, dynamics, autophagy, oxidative stress, cytokines associated with mitochondria, vesicular structures, and associated membranes in the context of chronic inflammatory musculoskeletal disorders. Strategies targeting key elements regulating mitochondrial quality exhibit promise in the restoration of mitochondrial function, alleviation of inflammation, and enhancement of overall outcomes.
Collapse
Affiliation(s)
- Kailun Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University/Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People's Republic of China
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Ling Qin
- Musculoskeletal Research Laboratory of the Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
- MOE China-Europe Sports Medicine Belt and Road Joint Laboratory, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Halfon M, Tankeu AT, Ribi C. Mitochondrial Dysfunction in Systemic Lupus Erythematosus with a Focus on Lupus Nephritis. Int J Mol Sci 2024; 25:6162. [PMID: 38892349 PMCID: PMC11173067 DOI: 10.3390/ijms25116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting mostly women of child-bearing age. Immune dysfunction in SLE results from disrupted apoptosis which lead to an unregulated interferon (IFN) stimulation and the production of autoantibodies, leading to immune complex formation, complement activation, and organ damage. Lupus nephritis (LN) is a common and severe complication of SLE, impacting approximately 30% to 40% of SLE patients. Recent studies have demonstrated an alteration in mitochondrial homeostasis in SLE patients. Mitochondrial dysfunction contributes significantly to SLE pathogenesis by enhancing type 1 IFN production through various pathways involving neutrophils, platelets, and T cells. Defective mitophagy, the process of clearing damaged mitochondria, exacerbates this cycle, leading to increased immune dysregulation. In this review, we aim to detail the physiopathological link between mitochondrial dysfunction and disease activity in SLE. Additionally, we will explore the potential role of mitochondria as biomarkers and therapeutic targets in SLE, with a specific focus on LN. In LN, mitochondrial abnormalities are observed in renal cells, correlating with disease progression and renal fibrosis. Studies exploring cell-free mitochondrial DNA as a biomarker in SLE and LN have shown promising but preliminary results, necessitating further validation and standardization. Therapeutically targeting mitochondrial dysfunction in SLE, using drugs like metformin or mTOR inhibitors, shows potential in modulating immune responses and improving clinical outcomes. The interplay between mitochondria, immune dysregulation, and renal involvement in SLE and LN underscores the need for comprehensive research and innovative therapeutic strategies. Understanding mitochondrial dynamics and their impact on immune responses offers promising avenues for developing personalized treatments and non-invasive biomarkers, ultimately improving outcomes for LN patients.
Collapse
Affiliation(s)
- Matthieu Halfon
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Aurel T. Tankeu
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Camillo Ribi
- Division of Immunology and Allergy, Lausanne University Hospital, CH-1010 Lausanne, Switzerland;
| |
Collapse
|
3
|
Sukhorukov VN, Khotina VA, Kalmykov VA, Zhuravlev AD, Sinyov VV, Popov DY, Vinokurov AY, Sobenin IA, Orekhov AN. Mitochondrial Genome Editing: Exploring the Possible Relationship of the Atherosclerosis-Associated Mutation m.15059G>A With Defective Mitophagy. J Lipid Atheroscler 2024; 13:166-183. [PMID: 38826184 PMCID: PMC11140244 DOI: 10.12997/jla.2024.13.2.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Objective The aim of this study was to evaluate the effect of the m.15059G>A mitochondrial nonsense mutation on cellular functions related to atherosclerosis, such as lipidosis, pro-inflammatory response, and mitophagy. Heteroplasmic mutations have been proposed as a potential cause of mitochondrial dysfunction, potentially disrupting the innate immune response and contributing to the chronic inflammation associated with atherosclerosis. Methods The human monocytic cell line THP-1 and cytoplasmic hybrid cell line TC-HSMAM1 were used. An original approach based on the CRISPR/Cas9 system was developed and used to eliminate mitochondrial DNA (mtDNA) copies carrying the m.15059G>A mutation in the MT-CYB gene. The expression levels of genes encoding enzymes related to cholesterol metabolism were analyzed using quantitative polymerase chain reaction. Pro-inflammatory cytokine secretion was assessed using enzyme-linked immunosorbent assays. Mitophagy in cells was detected using confocal microscopy. Results In contrast to intact TC-HSMAM1 cybrids, Cas9-TC-HSMAM1 cells exhibited a decrease in fatty acid synthase (FASN) gene expression following incubation with atherogenic low-density lipoprotein. TC-HSMAM1 cybrids were found to have defective mitophagy and an inability to downregulate the production of pro-inflammatory cytokines (to establish immune tolerance) upon repeated lipopolysaccharide stimulation. Removal of mtDNA harboring the m.15059G>A mutation resulted in the re-establishment of immune tolerance and the activation of mitophagy in the cells under investigation. Conclusion The m.15059G>A mutation was found to be associated with defective mitophagy, immune tolerance, and impaired metabolism of intracellular lipids due to upregulation of FASN in monocytes and macrophages.
Collapse
Affiliation(s)
- Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Victoria A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Vladislav A. Kalmykov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Alexander D. Zhuravlev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Vasily V. Sinyov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
| | - Daniil Y. Popov
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
| |
Collapse
|
4
|
Guo Y, Jiang H, Wang M, Ma Y, Zhang J, Jing L. Metformin alleviates cerebral ischemia/reperfusion injury aggravated by hyperglycemia via regulating AMPK/ULK1/PINK1/Parkin pathway-mediated mitophagy and apoptosis. Chem Biol Interact 2023; 384:110723. [PMID: 37741536 DOI: 10.1016/j.cbi.2023.110723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Stroke remains the main leading cause of death and disabilities worldwide, with diabetes mellitus being a significant independent risk factor for it. Metformin, as an efficient hypoglycemic drug in treating type 2 diabetes, has been reported to alleviate the risk of diabetes-related stroke. However, its underlying mechanisms remain unclear. This study aimed to investigate the role of mitophagy and its regulatory pathway in the neuroprotective mechanism of metformin against cerebral ischemia/reperfusion (I/R) injury aggravated by hyperglycemia. A hyperglycemic cerebral I/R animal model and a high glucose cultured oxygen-glucose deprivation/reperfusion (OGD/R) cell model were used in the experiment. The indexes of brain injury, cell activity, mitochondrial morphology and function, mitophagy, mitochondrial pathway apoptosis and the AMPK pathway were observed. In diabetic rats, metformin treatment decreased cerebral infarction volume and neuronal apoptosis, and improved neurological symptoms following I/R injury. Additionally, metformin induced activation of the AMPK/ULK1/PINK1/Parkin mitophagy pathway to have neuroprotective effects. In vitro, high glucose culture and OGD/R treatment impaired mitochondrial morphology and function, mitochondrial membrane potential, and induced apoptosis. However, metformin activated AMPK/ULK1/PINK1/Parkin mitophagy pathway, normalized mitochondrial injury. This protection was reversed by autophagy inhibitor 3-methyladenine (3MA) and AMPK inhibitor compound C. In conclusion, our present study validates the potential mechanism of metformin in alleviating hyperglycemia aggravated cerebral I/R injury by the activation of AMPK/ULK1/PINK1/Parkin mitophagy pathway.
Collapse
Affiliation(s)
- Yaqi Guo
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Meng Wang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yanmei Ma
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jianzhong Zhang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Li Jing
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
5
|
Di Mambro T, Pellielo G, Agyapong ED, Carinci M, Chianese D, Giorgi C, Morciano G, Patergnani S, Pinton P, Rimessi A. The Tricky Connection between Extracellular Vesicles and Mitochondria in Inflammatory-Related Diseases. Int J Mol Sci 2023; 24:8181. [PMID: 37175888 PMCID: PMC10179665 DOI: 10.3390/ijms24098181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.
Collapse
Affiliation(s)
- Tommaso Di Mambro
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giulia Pellielo
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Esther Densu Agyapong
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|
7
|
Wang S, Tan J, Miao Y, Zhang Q. Mitochondrial Dynamics, Mitophagy, and Mitochondria–Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia. Front Cell Dev Biol 2022; 10:848214. [PMID: 35281107 PMCID: PMC8914053 DOI: 10.3389/fcell.2022.848214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are double membrane organelles within eukaryotic cells, which act as cellular power houses, depending on the continuous availability of oxygen. Nevertheless, under hypoxia, metabolic disorders disturb the steady-state of mitochondrial network, which leads to dysfunction of mitochondria, producing a large amount of reactive oxygen species that cause further damage to cells. Compelling evidence suggests that the dysfunction of mitochondria under hypoxia is linked to a wide spectrum of human diseases, including obstructive sleep apnea, diabetes, cancer and cardiovascular disorders. The functional dichotomy of mitochondria instructs the necessity of a quality-control mechanism to ensure a requisite number of functional mitochondria that are present to fit cell needs. Mitochondrial dynamics plays a central role in monitoring the condition of mitochondrial quality. The fission–fusion cycle is regulated to attain a dynamic equilibrium under normal conditions, however, it is disrupted under hypoxia, resulting in mitochondrial fission and selective removal of impaired mitochondria by mitophagy. Current researches suggest that the molecular machinery underlying these well-orchestrated processes are coordinated at mitochondria–endoplasmic reticulum contact sites. Here, we establish a holistic understanding of how mitochondrial dynamics and mitophagy are regulated at mitochondria–endoplasmic reticulum contact sites under hypoxia.
Collapse
|
8
|
Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021. [PMID: 34674795 PMCID: PMC8728543 DOI: 10.5483/bmbrep.2021.54.12.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.
Collapse
Affiliation(s)
- Ga Hyun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
9
|
Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021; 54:592-600. [PMID: 34674795 PMCID: PMC8728543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 08/21/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synucleincontaining protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies. [BMB Reports 2021; 54(12): 592-600].
Collapse
Affiliation(s)
- Ga Hyun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
10
|
Orekhov AN, Gerasimova EV, Sukhorukov VN, Poznyak AV, Nikiforov NG. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Curr Pharm Des 2021; 27:276-292. [PMID: 33045961 DOI: 10.2174/1381612826666201012164330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Elena V Gerasimova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russian Federation
| | | | | | - Nikita G Nikiforov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| |
Collapse
|
11
|
Macrophages in Health and Non-Infectious Disease. Biomedicines 2021; 9:biomedicines9050460. [PMID: 33922416 PMCID: PMC8145399 DOI: 10.3390/biomedicines9050460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
In this Special Issue of Biomedicines, we have many insightful reviews and research papers on the subject "Macrophages in Health and Non-infectious Disease", but first; we should discuss briefly the current situation in the field [...].
Collapse
|
12
|
Bezsonov EE, Sobenin IA, Orekhov AN. Immunopathology of Atherosclerosis and Related Diseases: Focus on Molecular Biology. Int J Mol Sci 2021; 22:ijms22084080. [PMID: 33920897 PMCID: PMC8071216 DOI: 10.3390/ijms22084080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 2-4 Bol’shaya Pirogovskaya Ulitsa, 119435 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15a 3rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| |
Collapse
|
13
|
Yuk JM, Silwal P, Jo EK. Inflammasome and Mitophagy Connection in Health and Disease. Int J Mol Sci 2020; 21:ijms21134714. [PMID: 32630319 PMCID: PMC7370205 DOI: 10.3390/ijms21134714] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammasome is a large intracellular protein complex that activates inflammatory caspase-1 and induces the maturation of interleukin (IL)-1β and IL-18. Mitophagy plays an essential role in the maintenance of mitochondrial homeostasis during stress. Previous studies have indicated compelling evidence of the crosstalk between inflammasome and mitophagy. Mitophagy regulation of the inflammasome, or vice versa, is crucial for various biological functions, such as controlling inflammation and metabolism, immune and anti-tumor responses, and pyroptotic cell death. Uncontrolled regulation of the inflammasome often results in pathological inflammation and pyroptosis, and causes a variety of human diseases, including metabolic and inflammatory diseases, infection, and cancer. Here, we discuss how improved understanding of the interactions between inflammasome and mitophagy can lead to novel therapies against various disease pathologies, and how the inflammasome-mitophagy connection is currently being targeted pharmacologically by diverse agents and small molecules. A deeper understanding of the inflammasome-mitophagy connection will provide new insights into human health and disease through the balance between mitochondrial clearance and pathology.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-580-8243
| |
Collapse
|
14
|
Morales I, Sanchez A, Puertas-Avendaño R, Rodriguez-Sabate C, Perez-Barreto A, Rodriguez M. Neuroglial transmitophagy and Parkinson's disease. Glia 2020; 68:2277-2299. [PMID: 32415886 DOI: 10.1002/glia.23839] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Mitophagy is essential for the health of dopaminergic neurons because mitochondrial damage is a keystone of Parkinson's disease. The aim of the present work was to study the degradation of mitochondria in the degenerating dopaminergic synapse. Adult Sprague-Dawley rats and YFP-Mito-DAn mice with fluorescent mitochondria in dopaminergic neurons were injected in the lateral ventricles with 6-hydroxydopamine, a toxic that inhibits the mitochondrial chain of dopaminergic neurons and blockades the axonal transport. Dopaminergic terminals closest to the lateral ventricle showed an axonal fragmentation and an accumulation of damaged mitochondria in 2-9 μ saccular structures (spheroids). Damaged mitochondria accumulated in spheroids initiated (showing high Pink1, parkin, ubiquitin, p-S65-Ubi, AMBRA1, and BCL2L13 immunoreactivity and developing autophagosomes) but did not complete (mitochondria were not polyubiquitinated, autophagosomes had no STX17, and no lysosomes were found in spheroids) the mitophagy process. Then, spheroids were penetrated by astrocytic processes and DAergic mitochondria were transferred to astrocytes where they were polyubiquitinated (UbiK63+) and linked to mature autophagosomes (STX17+) which became autophagolysosomes (Lamp1/Lamp2 which co-localized with LC3). Present data provide evidence that the mitophagy of degenerating dopaminergic terminals starts in the dopaminergic spheroids and finishes in the surrounding astrocytes (spheroid-mediated transmitophagy). The neuron-astrocyte transmitophagy could be critical for preventing the release of damaged mitochondria to the extracellular medium and the neuro-inflammatory activity which characterizes Parkinson's disease.
Collapse
Affiliation(s)
- Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | | | - Adrian Perez-Barreto
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
15
|
Orekhov AN, Nikiforov NN, Ivanova EA, Sobenin IA. Possible Role of Mitochondrial DNA Mutations in Chronification of Inflammation: Focus on Atherosclerosis. J Clin Med 2020; 9:jcm9040978. [PMID: 32244740 PMCID: PMC7230212 DOI: 10.3390/jcm9040978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chronification of inflammation is the process that lies at the basis of several human diseases that make up to 80% of morbidity and mortality worldwide. It can also explain a great deal of processes related to aging. Atherosclerosis is an example of the most important chronic inflammatory pathology in terms of public health impact. Atherogenesis is based on the inflammatory response of the innate immunity arising locally or focally. The main trigger for this response appears to be modified low-density lipoprotein (LDL), although other factors may also play a role. With the quick resolution of inflammation, atherosclerotic changes in the arterial wall do not occur. However, a violation of the innate immunity response can lead to chronification of local inflammation and, as a result, to atherosclerotic lesion formation. In this review, we discuss possible mechanisms of the impaired immune response with a special focus on mitochondrial dysfunction. Some mitochondrial dysfunctions may be due to mutations in mitochondrial DNA. Several mitochondrial DNA mutations leading to defective mitophagy have been identified. The regulatory role of mitophagy in the immune response has been shown in recent studies. We suggest that defective mitophagy promoted by mutations in mitochondrial DNA can cause innate immunity disorders leading to chronification of inflammation.
Collapse
Affiliation(s)
- Alexander N. Orekhov
- Laboratory for Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 117418 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Nikita N. Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia;
| |
Collapse
|
16
|
Metzger MB, Scales JL, Dunklebarger MF, Loncarek J, Weissman AM. A protein quality control pathway at the mitochondrial outer membrane. eLife 2020; 9:51065. [PMID: 32118579 PMCID: PMC7136024 DOI: 10.7554/elife.51065] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/01/2020] [Indexed: 12/27/2022] Open
Abstract
Maintaining the essential functions of mitochondria requires mechanisms to recognize and remove misfolded proteins. However, quality control (QC) pathways for misfolded mitochondrial proteins remain poorly defined. Here, we establish temperature-sensitive (ts-) peripheral mitochondrial outer membrane (MOM) proteins as novel model QC substrates in Saccharomyces cerevisiae. The ts- proteins sen2-1HAts and sam35-2HAts are degraded from the MOM by the ubiquitin-proteasome system. Ubiquitination of sen2-1HAts is mediated by the ubiquitin ligase (E3) Ubr1, while sam35-2HAts is ubiquitinated primarily by San1. Mitochondria-associated degradation (MAD) of both substrates requires the SSA family of Hsp70s and the Hsp40 Sis1, providing the first evidence for chaperone involvement in MAD. In addition to a role for the Cdc48-Npl4-Ufd1 AAA-ATPase complex, Doa1 and a mitochondrial pool of the transmembrane Cdc48 adaptor, Ubx2, are implicated in their degradation. This study reveals a unique QC pathway comprised of a combination of cytosolic and mitochondrial factors that distinguish it from other cellular QC pathways.
Collapse
Affiliation(s)
- Meredith B Metzger
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Jessica L Scales
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Mitchell F Dunklebarger
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| |
Collapse
|
17
|
Luo F, Zhou Z, Cai J, Du W. DUB3 Facilitates Growth and Inhibits Apoptosis Through Enhancing Expression of EZH2 in Oral Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:1447-1460. [PMID: 32110043 PMCID: PMC7035907 DOI: 10.2147/ott.s230577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background Here, we probed the action mechanism of ubiquitin-specific processing proteases 17 (DUB3) in the evolution of oral squamous cell carcinoma (OSCC). Methods The expression of genes were calculated by qRT-PCR, and proteins were assessed by Western blot and immunohistochemistry. The cells viability and proliferation were checked by MTT and EdU assay, respectively. Flow cytometry was implemented to detect the cell cycle and apoptosis. The activity of EZH2 gene promoter was measured by luciferase reporter assay. Co-immunoprecipitation assay was used to ensure the ubiquitination of bromodomain-containing protein 4 (BRD4). The cell apoptosis of tumor tissues was assessed by TUNEL assay. Results DUB3 was overexpressed in OSCC tissues and cell lines, and negatively correlated with patient’s survival time. DUB3 downregulation could effectively curb OSCC cells viability and proliferation, promote cell apoptosis and the expression of cleaved-caspase-3, cleaved PARP and p21, while inhibit cyclin D1. Besides, DUB3 production was positivity correlated with enhancer of zeste homolog-2 (EZH2) and BRD4. BRD4 downregulation could repress DUB3-induced EZH2 production, and MG132 reversed DUB3 decreasing-mediated BRD4 downregulation. Downregulation of DUB3 promoted BRD4 ubiquitination. DUB3 promoted OSCC cells proliferation, while suppressing apoptosis via facilitating EZH2 production. At last, in vivo experiment indicated that the downregulation of DUB3 significantly inhibited the growth of xenograft tumor. Conclusion In summary, we found that DUB3 enhanced OSCC cells proliferation and xenograft tumor growth, while inhibited their apoptosis via promoting BRD4-mediated upregulation of EZH2. Our study indicated that DUB3 may be an effective anti-cancer target for OSCC therapy.
Collapse
Affiliation(s)
- Fei Luo
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Zunyan Zhou
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Jun Cai
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Wei Du
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| |
Collapse
|
18
|
Shang H, Xia Z, Bai S, Zhang HE, Gu B, Wang R. Downhill Running Acutely Elicits Mitophagy in Rat Soleus Muscle. Med Sci Sports Exerc 2020; 51:1396-1403. [PMID: 30649103 DOI: 10.1249/mss.0000000000001906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to investigate the effects of downhill treadmill running on mitochondrial structure/function and expression levels of mitophagy-related proteins in rat skeletal muscle. METHODS A total of 48 male adult Sprague-Dawley rats were randomly divided into a control group (C, n = 8) and an exercise group (E, n = 40). Rats in the E group were exercised on a treadmill down a 16° decline at 16 m·min for 90 min and were further divided into 0 h (E0), 12 h (E12), 24 h (E24), 48 h (E48), and 72 h (E72) postexercise subgroups (n = 8 each). At each time point, the soleus muscle was collected under full anesthesia. Mitochondrial ultrastructural changes in skeletal muscle were observed by a transmission electron microscope. The content of quantitative enzyme citrate synthase and the activities of mitochondrial respiratory chain complex II and complex IV were measured by enzyme-linked immunosorbent assay. Protein expressions of skeletal muscle cytochrome c oxidase subunit 1 (COX1), PTEN-induced putative kinase 1 (PINK1), and mitochondrial Parkin microtubule-associated protein 1 light chain 3 (LC3) were determined by Western blot. Mitochondrial colocalizations with Parkin, ubiquitin (Ub), p62/sequestosome 1 (p62), and LC3 were measured by the immunofluorescence double labeling technique. RESULTS After downhill treadmill running, the skeletal muscle mitochondrial structure changed dramatically, and a large amount of mitophagosomes were observed; the citrate synthase content and complex II activity were significantly lower (P < 0.05), whereas complex IV activity and COX1 protein level remained unchanged; the expression levels of PINK1, Parkin, Ub, p62, and LC3 were significantly higher than those in the C group (P < 0.05 or P < 0.01). CONCLUSION A session of downhill treadmill running activated the PINK1/Parkin pathway and facilitated mitochondrial colocalizations with Ub, p62, and LC3, causing mitophagy and mitochondrial damage within the skeletal muscle.
Collapse
Affiliation(s)
- Huayu Shang
- School of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, CHINA.,College of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, CHINA
| | - Shengchao Bai
- College of Sports Science, Beijing Sport University, Beijing, CHINA.,Department of Physical Education, Nanjing University of Science and Technology, Nanjing, CHINA
| | - H E Zhang
- College of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Boya Gu
- College of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Ruiyuan Wang
- College of Sports Science, Beijing Sport University, Beijing, CHINA
| |
Collapse
|
19
|
Matsubara H, Tanaka R, Tateishi T, Yoshida H, Yamaguchi M, Kataoka T. The human Bcl-2 family member Bcl-rambo and voltage-dependent anion channels manifest a genetic interaction in Drosophila and cooperatively promote the activation of effector caspases in human cultured cells. Exp Cell Res 2019; 381:223-234. [PMID: 31102594 DOI: 10.1016/j.yexcr.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023]
Abstract
We previously reported that the Bcl-2 family member human Bcl-rambo, also known as BCL2L13, induces apoptosis in human embryonic kidney 293T cells. Mouse Bcl-rambo has recently been reported to mediate mitochondrial fragmentation and mitophagy. In the present study, we showed that the transfection of human Bcl-rambo and its microtubule-associated protein light chain 3-interacting region motif mutant (W276A/I279A) caused mitochondrial fragmentation and the perinuclear accumulation of fragmented mitochondria in human lung adenocarcinoma A549 cells. In comprehensive screening using the Drosophila model in which human Bcl-rambo was ectopically expressed in eye imaginal discs, voltage-dependent anion channels (VDAC), also known as mitochondrial porin, were found to manifest a genetic interaction with human Bcl-rambo. In addition to human adenine nucleotide translocase (ANT) 1 and ANT2, the human Bcl-rambo protein bound to human VDAC1, albeit to a lesser extent than ANT2. Moreover, human VDAC1 and human VDAC2 in particular promoted the activation of effector caspases only when they were co-expressed with human Bcl-rambo in 293T cells. Bcl-rambo induced the perinuclear accumulation of fragmented mitochondria by the knockdown of VDAC1, VDAC2, and VDAC3 in A549 cells. Thus, the present study revealed that human Bcl-rambo and VDAC cooperatively promote the activation of effector caspases in human cultured cells.
Collapse
Affiliation(s)
- Hisanori Matsubara
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Reiji Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tatsuya Tateishi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
20
|
|
21
|
Han G, Liu K, Li L, Li X, Zhao P. The effects of hyperbaric oxygen therapy on neuropathic pain via mitophagy in microglia. Mol Pain 2018; 13:1744806917710862. [PMID: 28580811 PMCID: PMC5464519 DOI: 10.1177/1744806917710862] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Hyperbaric oxygen (HBO) therapy has been suggested to palliate neuropathic pain, but the mechanisms involved are not well understood. This study explored the involvement of microglial mitophagy via HBO relative to neuropathic pain therapy. Materials and methods A total of 80 male Sprague Dawley rats were randomly divided into two groups: a normal group (n = 40) and a mitophagy inhibitor group (n = 40) in which the mitophagy inhibitor cyclosporin A (CsA) was administrated prior to chronic constriction injury (CCI). Groups (n = 10 rats per group) consisted of the following: control (C), sham operation (S), sciatic nerve with chronic constriction injury (CCI), and a CCI plus HBO treatment (CCI + HBO). Pain-related behaviors were evaluated using mechanical withdraw tendency and thermal withdraw latency analysis. Mitochondrial membrane potential was measured, and Western blot was employed to assess expression of NIX and BNIP3. Immunofluorescence changes in neuron protein (NESTIN) and mitochondria inner or outer layer proteins (TIM23, TOM20) were examined. Results HBO significantly ameliorated pain-related behaviors, which were downregulated by mitophagy inhibitors (P < 0.05). Mitochondrial membrane potential indexes were decreased after HBO therapy, but were reversed in the mitophagy inhibitor group (P < 0.05). HBO upregulated NIX and BNIP3 expression, which did not occur in the CCI group (P < 0.05). However, expression was reduced when mitophagy inhibitors were administered. Immunofluorescence examination showed that mitophagy in microglia was induced by CCI, which was upregulated after HBO treatment. This phenomenon was not observed in the mitophagy inhibitor group. Conclusions HBO therapy palliated CCI-induced neuropathic pain in rats by upregulating microglial mitophagy. These results could serve as guidelines to improve neuropathic pain therapy using HBO to maximize therapeutic efficiency.
Collapse
Affiliation(s)
- Guang Han
- Department of Anesthesiology, Shengjing Hospital, China Medical University
| | - Kun Liu
- Department of Anesthesiology, Shengjing Hospital, China Medical University
| | - Lu Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University
| | - Xingyue Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University
| | | |
Collapse
|
22
|
Dela Cruz CS, Kang MJ. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2017; 41:37-44. [PMID: 29221810 DOI: 10.1016/j.mito.2017.12.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Inflammation represents a comprehensive host response to external stimuli for the purpose of eliminating the offending agent, minimizing injury to host tissues and fostering repair of damaged tissues back to homeostatic levels. In normal physiologic context, inflammatory response culminates with the resolution of infection and tissue damage response. However, in a pathologic context, persistent or inappropriately regulated inflammation occurs that can lead to chronic inflammatory diseases. Recent scientific advances have integrated the role of innate immune response to be an important arm of the inflammatory process. Accordingly, the dysregulation of innate immunity has been increasingly recognized as a driving force of chronic inflammatory diseases. Mitochondria have recently emerged as organelles which govern fundamental cellular functions including cell proliferation or differentiation, cell death, metabolism and cellular signaling that are important in innate immunity and inflammation-mediated diseases. As a natural consequence, mitochondrial dysfunction has been highlighted in a myriad of chronic inflammatory diseases. Moreover, the similarities between mitochondrial and bacterial constituents highlight the intrinsic links in the innate immune mechanisms that control chronic inflammation in diseases where mitochondrial damage associated molecular patterns (DAMPs) have been involved. Here in this review, the role of mitochondria in innate immune responses is discussed and how it pertains to the mitochondrial dysfunction or DAMPs seen in chronic inflammatory diseases is reviewed.
Collapse
Affiliation(s)
- Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, United States.
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, United States.
| |
Collapse
|
23
|
Hou H, Er P, Cheng J, Chen X, Ding X, Wang Y, Chen X, Yuan Z, Pang Q, Wang P, Qian D. High expression of FUNDC1 predicts poor prognostic outcomes and is a promising target to improve chemoradiotherapy effects in patients with cervical cancer. Cancer Med 2017; 6:1871-1881. [PMID: 28719148 PMCID: PMC5548885 DOI: 10.1002/cam4.1112] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
FUN14 domain containing 1 (FUNDC1) is an important molecule in receptor‐dependent mitophagy. However, the roles of FUNDC1 in human cancer biology remain unknown. The aim of this study was to explore the expression and roles of FUNDC1 in cervical cancer. Immunohistochemistry and Western blotting were applied to detect the expression of FUNDC1, and small‐hairpin RNA was applied to inhibit the expression of endogenous FUNDC1 in cervical cancer cells. MTT assays and Flow cytometric analysis were applied to examine cell proliferation and apoptosis. Immunofluorescence was used to detect the formation of γH2AX foci and evaluate the extent of DNA damage. Compared with corresponding adjacent noncancerous cervical tissues, the expression of FUNDC1 in cervical cancer cells was significantly increased. High expression of FUNDC1 and the prognosis of patients with cervical cancer were correlated negatively, which could be used as an independent prognostic factor for overall survival and disease‐free survival. Depletion of FUNDC1 significantly inhibited the proliferation of tumor cells, induced apoptosis, and enhanced cell sensitivity to cisplatin and ionizing radiation (IR). Our data suggested that FUNDC1 can be used as a prognostic biomarker in patients with cervical cancer, and may be a new therapeutic target to improve the antitumor effects of chemoradiotherapy.
Collapse
Affiliation(s)
- Hailing Hou
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Puchun Er
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingjing Cheng
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiuli Chen
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Ding
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuwen Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Yuan
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Qian
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|