1
|
Johnson C, Burkhart DL, Haigis KM. Classification of KRAS-Activating Mutations and the Implications for Therapeutic Intervention. Cancer Discov 2022; 12:913-923. [PMID: 35373279 PMCID: PMC8988514 DOI: 10.1158/2159-8290.cd-22-0035] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Members of the family of RAS proto-oncogenes, discovered just over 40 years ago, were among the first cancer-initiating genes to be discovered. Of the three RAS family members, KRAS is the most frequently mutated in human cancers. Despite intensive biological and biochemical study of RAS proteins over the past four decades, we are only now starting to devise therapeutic strategies to target their oncogenic properties. Here, we highlight the distinct biochemical properties of common and rare KRAS alleles, enabling their classification into functional subtypes. We also discuss the implications of this functional classification for potential therapeutic avenues targeting mutant subtypes. SIGNIFICANCE Efforts in the recent past to inhibit KRAS oncogenicity have focused on kinases that function in downstream signal transduction cascades, although preclinical successes have not translated to patients with KRAS-mutant cancer. Recently, clinically effective covalent inhibitors of KRASG12C have been developed, establishing two principles that form a foundation for future efforts. First, KRAS is druggable. Second, each mutant form of KRAS is likely to have properties that make it uniquely druggable.
Collapse
Affiliation(s)
- Christian Johnson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Deborah L Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Hu Y, Chen L, Tang Q, Wei W, Cao Y, Xie J, Ji J. Pan-cancer analysis revealed the significance of the GTPBP family in cancer. Aging (Albany NY) 2022; 14:2558-2573. [PMID: 35320117 PMCID: PMC9004551 DOI: 10.18632/aging.203952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Background: At present, cancer is still one of the principal diseases to represent a serious danger to human health. Although research on the pathogenesis and treatment of cancer is progressing rapidly, the current knowledge on this topic is far from sufficient. Some tumors with poor prognoses lack effective prognostic biomarkers. Methods: Firstly, the Wilcoxon test was used to analyse the expression of GTPBP1-GTPBP10 in cancerous and normal tissues. Subsequently, we explored the expression of GTPBP1-10 in cancer by way of a paired t-test and plotted the survival curve using KM and univariate Cox regression analysis to explore the relationship between GTPBP1-10 and the prognosis of cancer. We then explored the significance of the GTPBP family in the tumor microenvironment. Results: The results showed that many members of the GTPBP family are differentially expressed in a variety of cancers and alter the prognosis of a number of cancers. Members of the GTPBP family may serve as novel prognostic markers for these tumors. Moreover, members of the GTPBP family are correlated with the immune microenvironment of tumors, which is valuable in terms of adding to our understanding of the mechanisms of tumor genesis. Finally, we identified drugs showing a high correlation with GTPBP family members, which are therefore conducive to the development of GTPBP family member-based treatment regimens. Conclusions: The 10 members of the GTPBP family have prognostic value in multiple tumor types and are associated with the immune microenvironment. Our study may provide a reference for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Liang Chen
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, China
| | - Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wei
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, China
| | - Yuan Cao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| |
Collapse
|
3
|
Johnson CW, Seo HS, Terrell EM, Yang MH, KleinJan F, Gebregiworgis T, Gasmi-Seabrook GMC, Geffken EA, Lakhani J, Song K, Bashyal P, Popow O, Paulo JA, Liu A, Mattos C, Marshall CB, Ikura M, Morrison DK, Dhe-Paganon S, Haigis KM. Regulation of GTPase function by autophosphorylation. Mol Cell 2022; 82:950-968.e14. [PMID: 35202574 PMCID: PMC8986090 DOI: 10.1016/j.molcel.2022.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.
Collapse
Affiliation(s)
- Christian W Johnson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Moon-Hee Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Fenneke KleinJan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Ezekiel A Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jimit Lakhani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Puspalata Bashyal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Olesja Popow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Protein-membrane interactions in small GTPase signalling and pharmacology: perspectives from Arf GTPases studies. Biochem Soc Trans 2020; 48:2721-2728. [PMID: 33336699 DOI: 10.1042/bst20200482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Small GTPases, in association with their GEFs, GAPs and effectors, control major intracellular processes such as signal transduction, cytoskeletal dynamics and membrane trafficking. Accordingly, dysfunctions in their biochemical properties are associated with many diseases, including cancers, diabetes, infections, mental disorders and cardiac diseases, which makes them attractive targets for therapies. However, small GTPases signalling modules are not well-suited for classical inhibition strategies due to their mode of action that combines protein-protein and protein-membrane interactions. As a consequence, there is still no validated drug available on the market that target small GTPases, whether directly or through their regulators. Alternative inhibitory strategies are thus highly needed. Here we review recent studies that highlight the unique modalities of the interaction of small GTPases and their GEFs at the periphery of membranes, and discuss how they can be harnessed in drug discovery.
Collapse
|
5
|
Marcus K, Mattos C. Water in Ras Superfamily Evolution. J Comput Chem 2020; 41:402-414. [PMID: 31483874 DOI: 10.1002/jcc.26060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 08/16/2019] [Indexed: 01/14/2023]
Abstract
The Ras GTPase superfamily of proteins coordinates a diverse set of cellular outcomes, including cell morphology, vesicle transport, and cell proliferation. Primary amino acid sequence analysis has identified Specificity determinant positions (SDPs) that drive diversified functions specific to the Ras, Rho, Rab, and Arf subfamilies (Rojas et al. 2012, J Cell Biol 196:189-201). The inclusion of water molecules in structural and functional adaptation is likely to be a major response to the selection pressures that drive evolution, yet hydration patterns are not included in phylogenetic analysis. This article shows that conserved crystallographic water molecules coevolved with SDP residues in the differentiation of proteins within the Ras superfamily of small GTPases. The patterns of water conservation between protein subfamilies parallel those of sequence-based evolutionary trees. Thus, hydration patterns have the potential to help elucidate functional significance in the evolution of amino acid residues observed in phylogenetic analysis of homologous proteins. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kendra Marcus
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts, 02115
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts, 02115
| |
Collapse
|
6
|
ProtCID: a data resource for structural information on protein interactions. Nat Commun 2020; 11:711. [PMID: 32024829 PMCID: PMC7002494 DOI: 10.1038/s41467-020-14301-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Structural information on the interactions of proteins with other molecules is plentiful, and for some proteins and protein families, there may be 100s of available structures. It can be very difficult for a scientist who is not trained in structural bioinformatics to access this information comprehensively. Previously, we developed the Protein Common Interface Database (ProtCID), which provided clusters of the interfaces of full-length protein chains as a means of identifying biological assemblies. Because proteins consist of domains that act as modular functional units, we have extended the analysis in ProtCID to the individual domain level. This has greatly increased the number of large protein-protein clusters in ProtCID, enabling the generation of hypotheses on the structures of biological assemblies of many systems. The analysis of domain families allows us to extend ProtCID to the interactions of domains with peptides, nucleic acids, and ligands. ProtCID provides complete annotations and coordinate sets for every cluster. The authors previously developed the Protein Common Interface Database (ProtCID), which compares and clusters the interfaces of pairs of full-length protein chains with defined Pfam domain architectures in different PDB entries to identify biological assemblies. Here the authors extend ProtCID to the clustering of domain-domain interactions that also allows analyzing domain interactions with peptides, nucleic acids, and ligands.
Collapse
|
7
|
Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem Soc Trans 2018; 47:13-22. [PMID: 30559268 DOI: 10.1042/bst20170525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023]
Abstract
Small GTPases regulate many aspects of cell logistics by alternating between an inactive, GDP-bound form and an active, GTP-bound form. This nucleotide switch is coupled to a cytosol/membrane cycle, such that GTP-bound small GTPases carry out their functions at the periphery of endomembranes. A global understanding of the molecular determinants of the interaction of small GTPases with membranes and of the resulting supramolecular organization is beginning to emerge from studies of model systems. Recent studies highlighted that small GTPases establish multiple interactions with membranes involving their lipid anchor, their lipididated hypervariable region and elements in their GTPase domain, which combine to determine the strength, specificity and orientation of their association with lipids. Thereby, membrane association potentiates small GTPase interactions with GEFs, GAPs and effectors through colocalization and positional matching. Furthermore, it leads to small GTPase nanoclustering and to lipid demixing, which drives the assembly of molecular platforms in which proteins and lipids co-operate in producing high-fidelity signals through feedback and feedforward loops. Although still fragmentary, these observations point to an integrated model of signaling by membrane-attached small GTPases that involves a diversity of direct and indirect interactions, which can inspire new therapeutic strategies to block their activities in diseases.
Collapse
|