1
|
Karpinska B, Foyer CH. Superoxide signalling and antioxidant processing in the plant nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4599-4610. [PMID: 38460122 PMCID: PMC11317529 DOI: 10.1093/jxb/erae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
The superoxide anion radical (O2·-) is a one-electron reduction product of molecular oxygen. Compared with other forms of reactive oxygen species (ROS), superoxide has limited reactivity. Nevertheless, superoxide reacts with nitric oxide, ascorbate, and the iron moieties of [Fe-S] cluster-containing proteins. Superoxide has largely been neglected as a signalling molecule in the plant literature in favour of the most stable ROS form, hydrogen peroxide. However, superoxide can accumulate in plant cells, particularly in meristems, where superoxide dismutase activity and ascorbate accumulation are limited (or absent), or when superoxide is generated within the lipid environment of membranes. Moreover, oxidation of the nucleus in response to environmental stresses is a widespread phenomenon. Superoxide is generated in many intracellular compartments including mitochondria, chloroplasts, and on the apoplastic/cell wall face of the plasma membrane. However, nuclear superoxide production and functions remain poorly documented in plants. Accumulating evidence suggests that the nuclear pools of antioxidants such as glutathione are discrete and separate from the cytosolic pools, allowing compartment-specific signalling in the nucleus. We consider the potential mechanisms of superoxide generation and targets in the nucleus, together with the importance of antioxidant processing in regulating superoxide signalling.
Collapse
Affiliation(s)
- Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
2
|
Huang LJ, Yang W, Chen J, Yu P, Wang Y, Li N. Molecular identification and functional characterization of an environmental stress responsive glutaredoxin gene ROXY1 in Quercus glauca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108367. [PMID: 38237422 DOI: 10.1016/j.plaphy.2024.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
Quercus glauca is a valuable natural resource with both economic and ecological values. It is one of the dominant forest tree species widely distributed in Southern China. As a perennial broadleaf plant, Q. glauca inevitably encounters numerous stresses from environment. Glutaredoxins (GRXs) are a kind of small oxidoreductases that play an important role in response to oxidative stress. CC-type GRXs also known as ROXYs are specific to land plants. In this study, we isolated a CC-type GRX gene, QgROXY1, from Q. glauca. Expression of QgROXY1 is induced by a variety of environmental stimuli. QgROXY1 protein localizes to both cytoplasm and nucleus; whereas the nucleus localized QgROXY1 could physically interact with the basic region/leucine zipper motif (bZIP) transcription factor AtTGA2 from Arabidopsis thaliana. Transgenic A. thaliana ectopically expressing QgROXY1 is hypersensitive to exogenously applied salicylic acid. Induction of plant defense gene is significantly impaired in QgROXY1 transgenic plants that results in enhanced susceptibility to infection of Botrytis cinerea pathogen, indicating the evolutionary conserved function among ROXY homologs in weedy and woody plants. This is the first described function for the ROXYs in tree plants. Through this case study, we demonstrated the feasibility and efficacy of molecular technology applied to characterization of gene function in tree species.
Collapse
Affiliation(s)
- Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wenhai Yang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiali Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peiyao Yu
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yukun Wang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ning Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
3
|
Gutsche N, Koczula J, Trupp M, Holtmannspötter M, Appelfeller M, Rupp O, Busch A, Zachgo S. MpTGA, together with MpNPR, regulates sexual reproduction and independently affects oil body formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1559-1573. [PMID: 38095258 DOI: 10.1111/nph.19472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies. Furthermore, we investigated MpTGA interactions with wild-type and mutagenized MpNPR and expanded our analyses including TGA TFs from two streptophyte algae. Mptga mutants fail to induce the switch from vegetative to reproductive development and lack gametangiophore formation. MpTGA and MpNPR proteins interact and Mpnpr mutant analysis reveals a novel coregulatory NPR role in sexual reproduction. Additionally, MpTGA acts independently of MpNPR as a repressor of oil body (OB) formation and can thereby affect herbivory. The single MpTGA TF exerts a dual role in sexual reproduction and OB formation in Marchantia. Common activities of MpTGA/MpNPR in sexual development suggest that coregulatory interactions were established after emergence of land-plant-specific NPR genes and contributed to the diversification of TGA TF functions during land-plant evolution.
Collapse
Affiliation(s)
- Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Jens Koczula
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Melanie Trupp
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | | | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Andrea Busch
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
4
|
Awale P, McSteen P. Hormonal regulation of inflorescence and intercalary meristems in grasses. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102451. [PMID: 37739867 DOI: 10.1016/j.pbi.2023.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Hormones played a fundamental role in improvement of yield in cereal grasses. Natural variants affecting gibberellic acid (GA) and auxin pathways were used to breed semi-dwarf varieties of rice, wheat, and sorghum, during the "Green Revolution" in the 20th century. Since then, variants with altered GA and cytokinin homeostasis have been used to breed cereals with increased grain number. These yield improvements were enabled by hormonal regulation of intercalary and inflorescence meristems. Recent advances have highlighted additional pathways, beyond the traditional CLAVATA-WUSCHEL pathway, in the regulation of auxin and cytokinin in inflorescence meristems, and have expanded our understanding of the role of GA in intercalary meristems.
Collapse
Affiliation(s)
- Prameela Awale
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
5
|
Kulkarni CC, Cholin SS, Bajpai AK, Ondrasek G, Mesta RK, Rathod S, Patil HB. Comparative Root Transcriptome Profiling and Gene Regulatory Network Analysis between Eastern and Western Carrot ( Daucus carota L.) Cultivars Reveals Candidate Genes for Vascular Tissue Patterning. PLANTS (BASEL, SWITZERLAND) 2023; 12:3449. [PMID: 37836190 PMCID: PMC10575051 DOI: 10.3390/plants12193449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Carrot (Daucus carota L.) is a highly consumed vegetable rich in carotenoids, known for their potent antioxidant, anti-inflammatory, and immune-protecting properties. While genetic and molecular studies have largely focused on wild and Western carrot cultivars (cvs), little is known about the evolutionary interactions between closely related Eastern and Western cvs. In this study, we conducted comparative transcriptome profiling of root tissues from Eastern (UHSBC-23-1) and Western (UHSBC-100) carrot cv. to better understand differentially expressed genes (DEGs) associated with storage root development and vascular cambium (VC) tissue patterning. Through reference-guided TopHat mapping, we achieved an average mapping rate of 73.87% and identified a total of 3544 DEGs (p < 0.05). Functional annotation and gene ontology classification revealed 97 functional categories, including 33 biological processes, 19 cellular components, 45 metabolic processes, and 26 KEGG pathways. Notably, Eastern cv. exhibited enrichment in cell wall, plant-pathogen interaction, and signal transduction terms, while Western cv. showed dominance in photosynthesis, metabolic process, and carbon metabolism terms. Moreover, constructed gene regulatory network (GRN) for both cvs. obtained orthologs with 1222 VC-responsive genes of Arabidopsis thaliana. In Western cv, GRN revealed VC-responsive gene clusters primarily associated with photosynthetic processes and carbon metabolism. In contrast, Eastern cv. exhibited a higher number of stress-responsive genes, and transcription factors (e.g., MYB15, WRKY46, AP2/ERF TF connected via signaling pathways with NAC036) were identified as master regulators of xylem vessel differentiation and secondary cell wall thickening. By elucidating the comparative transcriptome profiles of Eastern and Western cvs. for the first time, our study provides valuable insights into the differentially expressed genes involved in root development and VC tissue patterning. The identification of key regulatory genes and their roles in these processes represents a significant advancement in our understanding of the evolutionary relations and molecular mechanisms underlying secondary growth of carrot and regulation by vascular cambium.
Collapse
Affiliation(s)
- Chaitra C. Kulkarni
- Plant Molecular Biology Lab (DBT-BIOCARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India;
- Kittur Rani Chennamma College of Horticulture, Arabhavi, Gokak 591218, Belgaum Dt., Karnataka, India
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Sarvamangala S. Cholin
- Plant Molecular Biology Lab (DBT-BIOCARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India;
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Akhilesh K. Bajpai
- Shodhaka Life Sciences Pvt. Ltd., Electronic City, Phase-I, Bengaluru 560100, Karnataka, India
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - R. K. Mesta
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Santosha Rathod
- Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - H. B. Patil
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| |
Collapse
|
6
|
Galic M, Ungermann C, Cosentino K. Highlight: on the past and the future of cellular microcompartments. Biol Chem 2023; 404:377-378. [PMID: 36951639 DOI: 10.1515/hsz-2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Affiliation(s)
- Milos Galic
- Institute of Medical Physics and Biophysics and 'Cells in Motion' Interfaculty Centre, University of Münster, D-48149 Münster, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|