A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment.
Polymers (Basel) 2022;
14:polym14245447. [PMID:
36559814 PMCID:
PMC9786624 DOI:
10.3390/polym14245447]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Starch and flour from various plants have been widely used for sundry applications, especially in the food and chemical industries. However, native starch and flour have several weaknesses, especially in functional, pasting, and physicochemical properties. The quality of native starch and flour can be improved by a modification process. The type of modification that is safe, easy, and efficient is physical modification using hydrothermal treatment techniques, including heat moisture treatment (HMT) and annealing (ANN). This review discusses the hydrothermal modifications of starch and flour, especially from various tubers and cereals. The discussion is mainly on its effect on five parameters, namely functional properties, morphology, pasting properties, crystallinity, and thermal properties. Modification of HMT and ANN, in general, can improve the functional properties, causing cracking of the granule surface, stable viscosity to heat, increasing crystallinity, and increasing gelatinization temperature. However, some modifications of starch and flour by HMT and ANN had no effect on several parameters or even had the opposite effect. The summary of the various studies reviewed can be a reference for the development of hydrothermal-modified starch and flour applications for various industries.
Collapse