1
|
Abd El‐Ghany NA, Abu Elella MH. Overview of Different Materials Used in Food Production. MATERIALS SCIENCE AND ENGINEERING IN FOOD PRODUCT DEVELOPMENT 2023:1-25. [DOI: 10.1002/9781119860594.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
2
|
Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, Toubarro D, Barros AIRNA. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals (Basel) 2023; 16:592. [PMID: 37111349 PMCID: PMC10144176 DOI: 10.3390/ph16040592] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Large-scale production of microalgae and their bioactive compounds has steadily increased in response to global demand for natural compounds. Spirulina, in particular, has been used due to its high nutritional value, especially its high protein content. Promising biological functions have been associated with Spirulina extracts, mainly related to its high value added blue pigment, phycocyanin. Phycocyanin is used in several industries such as food, cosmetics, and pharmaceuticals, which increases its market value. Due to the worldwide interest and the need to replace synthetic compounds with natural ones, efforts have been made to optimize large-scale production processes and maintain phycocyanin stability, which is a highly unstable protein. The aim of this review is to update the scientific knowledge on phycocyanin applications and to describe the reported production, extraction, and purification methods, including the main physical and chemical parameters that may affect the purity, recovery, and stability of phycocyanin. By implementing different techniques such as complete cell disruption, extraction at temperatures below 45 °C and a pH of 5.5-6.0, purification through ammonium sulfate, and filtration and chromatography, both the purity and stability of phycocyanin have been significantly improved. Moreover, the use of saccharides, crosslinkers, or natural polymers as preservatives has contributed to the increased market value of phycocyanin.
Collapse
Affiliation(s)
- Raquel Fernandes
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Joana Campos
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Mónica Serra
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Javier Fidalgo
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Hugo Almeida
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Casas
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus No 13, 9500-321 Ponta Delgada, Portugal
| | - Ana I. R. N. A. Barros
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
The Influence of the Use of Different Polysaccharide Coatings on the Stability of Phenolic Compounds and Antioxidant Capacity of Chokeberry Hydrogel Microcapsules Obtained by Indirect Extrusion. Foods 2023; 12:foods12030515. [PMID: 36766044 PMCID: PMC9914249 DOI: 10.3390/foods12030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
The aim of the study was to evaluate the effect of the use of different polysaccharides and their mixtures on the structure of chokeberry hydrogel microcapsules and the stability of polyphenolic compounds and antioxidant capacity during one month of refrigerated storage. As a coating material, alginate and its mixtures with pectin, carrageenan, and chitosan were used, while chokeberry juice and preparation of polyphenolic compounds were used as a core. In non-stored capsules, the addition of carrageenan, pectin, and chitosan to alginate increased the content of total polyphenolic compounds and antioxidant capacity. When compared to non-encapsulated juice, the capsules had a greater decrease in antioxidant capacity during storage. The coating variant composed of alginate and carrageenan was found to be the most beneficial for the preservation of the capsules' phenolic compounds. The findings revealed that proper polysaccharide coating selection is critical for the proper course of the microencapsulation process, the polyphenolic content of chokeberry capsules, and their antioxidant properties.
Collapse
|
4
|
Karthik C, Caroline DG, Pandi Prabha S. Nanochitosan augmented with essential oils and extracts as an edible antimicrobial coating for the shelf life extension of fresh produce: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Fabrication and characterization of phycocyanin-alginate-pregelatinized corn starch composite gel beads: Effects of carriers on kinetic stability of phycocyanin. Int J Biol Macromol 2022; 218:665-678. [PMID: 35870624 DOI: 10.1016/j.ijbiomac.2022.07.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Composite gel beads using calcium alginate and different concentrations of pregelatinized corn starch (PCS) were produced to encapsulate phycocyanin (PC). Rheological properties of different sodium alginate/PCS/PC mixtures, structural and morphological properties of beads, and kinetic stability of encapsulated PC (upon heating at various time-temperature combinations) were then assessed. Rheological properties of the mixtures exhibited shear thinning behaviors. Aquagram revealed that the PC-containing beads had more water structure with weak‑hydrogen bonds. Morphological images represented less subsidence in the structures of composite gel beads, unlike PCS-free beads. Kinetic study showed that degradation rate constant values of PC encapsulated in composite gel beads (1.08-3.45 × 10-4, 3.38-4.43 × 10-4, and 5.57-15.32 × 10-4 s-1) were lower than those in PCS-free alginate gel beads (4.45 × 10-4, 9.20 × 10-4, and 18.04 × 10-4 s-1) at 40, 50, and 60 °C, respectively. This study suggests that the composite gel beads can improve PC stability.
Collapse
|
6
|
Nowruzi B, Konur O, Anvar SAA. The Stability of the Phycobiliproteins in the Adverse Environmental Conditions Relevant to the Food Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02855-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Li Q, Dong P, Li L. Preparation and Characterization of Mg-Doped Calcium Phosphate-Coated Phycocyanin Nanoparticles for Improving the Thermal Stability of Phycocyanin. Foods 2022; 11:foods11040503. [PMID: 35205980 PMCID: PMC8871242 DOI: 10.3390/foods11040503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Phycocyanin (PC) is a blue-colored, pigment-protein complex with unique fluorescence characteristics. However, heat leads to PC fading and fluorescence decay, hampering its widespread application. To improve the thermal stability of PC, we induced the in situ mineralization of calcium phosphate (CaP) on the PC surface to prepare PC@Mg-CaP. The nanoparticles were characterized using transmission electron microscopy, energy dispersive spectrometry, fourier transform infrared spectroscopy, and X-ray diffraction. The results showed that PC@Mg-CaP was spherical, and the nanoparticle size was less than 200 nm. The shell of PC@Mg-CaP was composed of amorphous calcium phosphate (ACP). The study suggested that CaP mineralization significantly improved the thermal stability of PC. After heating at 70 °C for 30 min, the relative concentration of PC@Mg-CaP with a Ca/P ratio = 2 was 5.31 times higher than that of PC. Furthermore, the Ca/P ratio was a critical factor for the thermal stability of PC@Mg-CaP. With decreasing Ca/P, the particle size and thermal stability of PC@Mg-CaP significantly increased. This work could provide a feasible approach for the application of PC and other thermal-sensitive biomolecules in functional foods requiring heat treatment.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Correspondence: (P.D.); (L.L.)
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Correspondence: (P.D.); (L.L.)
| |
Collapse
|
8
|
İlter I, Koç M, Demirel Z, Conk Dalay M, Kaymak Ertekin F. Microencapsulation of Phycocyanin By Spray Drying Method: Effect of Process Parameters and Wall Materials. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Işıl İlter
- Faculty of Engineering Food Engineering Department, Ege University İzmir Turkey
| | - Mehmet Koç
- Faculty of Engineering, Food Engineering Department Aydın Adnan Menderes University Aydin Turkey
| | - Zeliha Demirel
- Faculty of Engineering Bioengineering Department, Ege University İzmir Turkey
| | - Meltem Conk Dalay
- Faculty of Engineering Bioengineering Department, Ege University İzmir Turkey
| | | |
Collapse
|
9
|
Adjali A, Clarot I, Chen Z, Marchioni E, Boudier A. Physicochemical degradation of phycocyanin and means to improve its stability: A short review. J Pharm Anal 2021; 12:406-414. [PMID: 35811624 PMCID: PMC9257648 DOI: 10.1016/j.jpha.2021.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/22/2022] Open
Abstract
The cyanobacterium Arthrospira platensis, spirulina, is a source of pigments such as phycobiliprotein and phycocyanin. Phycocyanin is used in the food, cosmetics, and pharmaceutical industries because of its antioxidant, anti-inflammatory, and anticancer properties. The different steps involved in extraction and purification of this protein can alter the final properties. In this review, the stability of phycocyanin (pH, temperature, and light) is discussed, considering the physicochemical parameters of kinetic modeling. The optimal working pH range for phycocyanin is between 5.5 and 6.0 and it remains stable up to 45 °C; however, exposure to relatively high temperatures or acidic pH decreases its half-life and increases the degradation kinetic constant. Phycobiliproteins are sensitive to light; preservatives such as mono- and di-saccharides, citric acid, or sodium chloride appear to be effective stabilizing agents. Encapsulation within nano- or micro-structured materials such as nanofibers, microparticles, or nanoparticles, can also preserve or enhance its stability. Phycocyanin is in great demand for industrial application. Phycocyanin is sensitive to pH, temperature, and light. Optimal stability occurs between pH 5.5–6.0 and at temperatures <45 °C in the dark. The use of preservatives or its encapsulation with polymers enhances its stability.
Collapse
Affiliation(s)
- Aïda Adjali
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Eric Marchioni
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
- Corresponding author.
| |
Collapse
|
10
|
|
11
|
Low Molecular Weight Kappa-Carrageenan Based Microspheres for Enhancing Stability and Bioavailability of Tea Polyphenols. Processes (Basel) 2021. [DOI: 10.3390/pr9071240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tea polyphenols (TP) are a widely acknowledged bioactive natural product, however, low stability and bioavailability have restricted their application in many fields. To enhance the stability and bioavailability of TP under certain moderate conditions, encapsulation technique was applied. Kappa–Carrageenan (KCG) was initially degraded to a lower molecular weight KCG (LKCG) by H2O2, and was selected as wall material to coat TP. The obtained LKCG (Mn = 13,009.5) revealed narrow dispersed fragments (DPI = 1.14). FTIR and NMR results demonstrated that the main chemical structure of KCG remained unchanged after degradation. Subsequently, LK-CG and TP were mixed and homogenized to form LK-CG-TP microspheres. SEM images of the microspheres revealed a regular spherical shape and smooth surface with a mean diameter of 5–10 μM. TG and DSC analysis indicated that LK-CG-TP microspheres exhibited better thermal stability as compared to free TP. The release profile of LK-CG-TP in simulated gastric fluid (SGF) showed a slowly release capacity during the tested 180 min with the final release rate of 88.1% after digestion. Furthermore, in vitro DPPH radical scavenging experiments revealed that LK-CG-TP had an enhanced DPPH scavenging rate as compared to equal concentration of free TP. These results indicated that LK-CG-TP microspheres were feasible for protection and delivery of TP and might have extensive potential applications in other bioactive components.
Collapse
|
12
|
İlter I, Koç M, Demirel Z, Conk Dalay M, Kaymak Ertekin F. Improving the stability of phycocyanin by spray dried microencapsulation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Işıl İlter
- Faculty of Engineering, Food Engineering Department Ege University İzmir Turkey
| | - Mehmet Koç
- Faculty of Engineering, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Zeliha Demirel
- Faculty of Engineering, Bio Engineering Department Ege University İzmir Turkey
| | - Meltem Conk Dalay
- Faculty of Engineering, Bio Engineering Department Ege University İzmir Turkey
| | | |
Collapse
|