1
|
Chehbani F, Gallello G, Brahim T, Ouanes S, Douki W, Gaddour N, Cervera Sanz ML. The status of chemical elements in the blood plasma of children with autism spectrum disorder in Tunisia: a case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35738-35749. [PMID: 32601867 DOI: 10.1007/s11356-020-09819-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders defined by a deficit in social interactions and the presence of restricted and stereotypical behaviors or interests. The etiologies of autism remain mostly unknown. Many genetic and environmental factors have been suspected. Among these environmental factors, exposure to several chemical elements has been previously studied. The purpose of this study was to compare the levels of trace elements in the blood plasma of children with ASD with typically developed children (TDC). The participants in this study consisted of 89 children with ASD (14 girls and 74 boys) and 70 TD children (29 girls and 41 boys). The levels of 33 chemical elements have been analyzed by inductively coupled plasma spectrometry (ICP-MS). We detected significant differences in the levels of eight elements between the two groups, among which there were three rare earth elements (REEs): Eu, Pr, and Sc (p = 0.000, p = 0.023, and p < 0.001 respectively); four heavy metals: Bi, Tl, Ti, and V (p = 0.004, p < 0.001, p = 0.001, and p = 0.001 respectively); and one essential element: Cu (p = 0.043). Children with ASD had higher levels of Er, Pr, Sc, Bi, Tl, Ti, and V, and lower levels of Cu in comparison with the TD group. The children exposed to passive smoking had lower levels of lead (Pb) compared with children without exposure (p = 0.018). Four elements (Cr, Er, Dy, and Pr) were negatively correlated to the severity of ASD. The level of Cu was significantly associated with autistic children's behavior (p = 0.014). These results suggest that children with ASD might have abnormal plasma levels of certain chemical elements (including Er, Pr, Sc, Bi, Tl, Ti, and V, and Cu), and some of these elements might be associated with certain clinical features.
Collapse
Affiliation(s)
- Fethia Chehbani
- Department of Psychiatry, Research Laboratory "Vulnerability to Psychotic Disorders LR 05 ES 10", Monastir University Hospital, Monastir, Tunisia.
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | - Gianni Gallello
- Department of Analytical Chemistry, University of Valencia, Valencia, Spain
- Department of Prehistory, Archaeology and Ancient History, University of Valencia, Valencia, Spain
| | - Takoua Brahim
- Unite of Child psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Wahiba Douki
- Department of Psychiatry, Research Laboratory "Vulnerability to Psychotic Disorders LR 05 ES 10", Monastir University Hospital, Monastir, Tunisia
- Biochemistry-Toxicology Laboratory, University Hospital of Monastir, Monastir, Tunisia
| | - Naoufel Gaddour
- Unite of Child psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | | |
Collapse
|
2
|
Dórea JG. Neurotoxic effects of combined exposures to aluminum and mercury in early life (infancy). ENVIRONMENTAL RESEARCH 2020; 188:109734. [PMID: 32544722 DOI: 10.1016/j.envres.2020.109734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Aluminum and mercury are environmentally ubiquitous. Individually they are both neurotoxic elements with shared neuro-pathogenic pathways: oxidative stress, altered neurotransmission, and disruption of the neuroendocrine and immune systems. In the infant, Al and Hg differ in type of exposure, absorption, distribution (brain access), and metabolism. In environmentally associated exposure (breast milk and infant formulas) their co-occurrences fluctuate randomly, but in Thimerosal-containing vaccines (TCVs) they occur combined in a proprietary ratio; in these cases, low-doses of Thimerosal-ethylmercury (EtHg) and adjuvant-Al present the most widespread binary mixture in less developed countries. Although experimental studies at low doses of the binary Hg and Al mixture are rare, when studied individually they have been shown to affect neurological outcomes negatively. In invitro systems, comparative neurotoxicity between Al and Hg varies in relation to the measured parameters but seems less for Al than for Hg. While neurotoxicity of environmental Hg (mainly fish methyl-Hg, MeHg) is associated with neurobehavioral outcomes in children, environmental Al is not associated, except in certain clinical conditions. Therefore, the issues of their neurotoxic effects (singly or combined) are discussed. In the infant (up to six months) the organic-Hg and Al body burdens from a full TCV schedule are estimated to reach levels higher than that originating from breastfeeding or from high aluminum soy-based formulas. Despite worldwide exposure to both Al and Hg (inorganic Hg, MeHg, and Thimerosal/EtHg), our knowledge on this combined exposure is insufficient to predict their combined neurotoxic effects (and with other co-occurring neurotoxicants).
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
3
|
Dórea JG. Multiple low-level exposures: Hg interactions with co-occurring neurotoxic substances in early life. Biochim Biophys Acta Gen Subj 2018; 1863:129243. [PMID: 30385391 DOI: 10.1016/j.bbagen.2018.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
All chemical forms of Hg can affect neurodevelopment; however, low levels of organic Hg (methylmercury-MeHg and ethylmercury-EtHg in Thimerosal-containing vaccines, hereafter 'TCV') exposures during early life (pregnancy and lactation) co-occur with other environmental neurotoxic substances. These neurotoxicants may act in parallel, synergistically, or antagonistically to Hg. Nevertheless, the risks of neurotoxicity associated with multiple neuro-toxicants depend on type, time, combinations of exposure, and environmental and/or genetic-associated factors. Neurological developmental disorders, delays in cognition and behavioral outcomes associated with multiple exposures (which include Hg) may show transient or lasting outcomes depending on constitutional and/or environmental factors that can interact to neutralize, aggravate or attenuate these effects; often these studies are challenging to interpret. During pregnancy and lactation, fish-MeHg exposure is frequently confounded with the opposing effects of neuroactive nutrients (in fish) that lead to positive, negative, or no effects on neurobehavioral tests. In infancy, exposures to acute binary mixtures (TCV- EtHg and Al-adjuvants in infant immunizations) are associated with increased risks of tics and other developmental disorders. Despite the certitude that promulgates single environmental neurotoxicants, empirical comparisons of combined exposures indicate that Hg-related outcome is uneven. Hg in combination with other neurotoxic mixtures may elevate risks of neurotoxicity, but these risks arise in circumstances that are not yet predictable. Therefore, to achieve the goals of the Minamata treaty and to safeguard the health of children, low levels of mercury exposure (in any chemical form) needs to be further reduced whether the source is environmental (air- and food-borne) or iatrogenic (pediatric TCVs).
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília 70919-970, DF, Brazil..
| |
Collapse
|
4
|
The risk of neurodevelopmental disorders following Thimerosal-containing Hib vaccine in comparison to Thimerosal-free Hib vaccine administered from 1995 to 1999 in the United States. Int J Hyg Environ Health 2018; 221:677-683. [DOI: 10.1016/j.ijheh.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/27/2017] [Accepted: 03/13/2018] [Indexed: 01/24/2023]
|
5
|
Dórea JG. Abating Mercury Exposure in Young Children Should Include Thimerosal-Free Vaccines. Neurochem Res 2017; 42:2673-2685. [PMID: 28439753 DOI: 10.1007/s11064-017-2277-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/27/2022]
Abstract
Pediatric immunization is essential to prevent, control and eradicate children`s infectious diseases. Newborns and infants in less developed countries have a concentrated schedule of Thimerosal-containing vaccines (TCVs); pregnant mothers are also immunized with TCVs. Metabolic changes during early development are demonstrably an important risk factor for ethylmercury (EtHg) effects on neurodevelopment, while exposure to Thimerosal sensitizes susceptible individuals to life-long contact dermatitis. Concerns regarding toxicity of Hg have moved rich nations to withdraw it from medicines and, in particular, Thimerosal from pediatric vaccines; it has been more than 20 years since rich countries started using Thimerosal-free vaccines. TCVs and Thimerosal-free vaccines show dissimilar profiles of adverse effects. Thimerosal-free vaccines have shown a decrease in contact dermatitis, while TCVs showed a significant association with increased risk of tic disorders; in some circumstances, EtHg in combination with other neurotoxic substances negatively impacted neurobehavioral tests. In studies that explored vaccines and risk of tics, Thimerosal was a necessary factor. However, when the binary exposure to organic Hg forms (TCV-EtHg and fish-MeHg) was considered, effects on neurobehavioral tests were inconsistent. CONCLUSIONS (a) The indiscriminate use of pediatric-TCVs in less developed countries carries an unjustifiable and excessive EtHg exposure with an unnecessary risk of neurotoxicity to the developing brain; (b) measurable benefits (of Thimerosal-free) and measurable risks of tic disorders have been associated with the (Thimerosal-containing) type of vaccine;
Collapse
Affiliation(s)
- José G Dórea
- Professor Emeritus, Faculty of Health Sciences, Universidade de Brasília, 70919-970, Brasília, DF, Brazil.
| |
Collapse
|
6
|
Dórea JG. Low-dose Thimerosal in pediatric vaccines: Adverse effects in perspective. ENVIRONMENTAL RESEARCH 2017; 152:280-293. [PMID: 27816865 DOI: 10.1016/j.envres.2016.10.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Vaccines are prophylactics used as the first line of intervention to prevent, control and eradicate infectious diseases. Young children (before the age of six months) are the demographic group most exposed to recommended/mandatory vaccines preserved with Thimerosal and its metabolite ethylmercury (EtHg). Particularly in the less-developed countries, newborns, neonates, and young children are exposed to EtHg because it is still in several of their pediatric vaccines and mothers are often immunized with Thimerosal-containing vaccines (TCVs) during pregnancy. While the immunogenic component of the product has undergone more rigorous testing, Thimerosal, known to have neurotoxic effects even at low doses, has not been scrutinized for the limit of tolerance alone or in combination with adjuvant-Al during immaturity or developmental periods (pregnant women, newborns, infants, and young children). Scientific evidence has shown the potential hazards of Thimerosal in experiments that modeled vaccine-EtHg concentrations. Observational population studies have revealed uncertainties related to neurological effects. However, consistently, they showed a link of EtHg with risk of certain neurodevelopment disorders, such as tic disorder, while clearly revealing the benefits of removing Thimerosal from children's vaccines (associated with immunological reactions) in developed countries. So far, only rich countries have benefited from withdrawing the risk of exposing young children to EtHg. Regarding Thimerosal administered to the very young, we have sufficient studies that characterize a state of uncertainty: the collective evidence strongly suggests that Thimerosal exposure is associated with adverse neurodevelopmental outcomes. It is claimed that the continued use of Thimerosal in the less-developed countries is due to the cost to change to another preservative, such as 2-phenoxyethanol. However, the estimated cost increase per child in the first year of life is lower than estimated lifetime cost of caring for a child with a neurodevelopmental disorder, such tic disorder. The evidence indicates that Thimerosal-free vaccine options should be made available in developing countries.
Collapse
Affiliation(s)
- José G Dórea
- Professor Emeritus, Faculty of Health Sciences, Universidade de Brasilia, 70919-970 Brasilia, DF, Brazil.
| |
Collapse
|
7
|
Geier DA, Kern JK, Homme KG, Geier MR. Abnormal Brain Connectivity Spectrum Disorders Following Thimerosal Administration: A Prospective Longitudinal Case-Control Assessment of Medical Records in the Vaccine Safety Datalink. Dose Response 2017; 15:1559325817690849. [PMID: 28539852 PMCID: PMC5433557 DOI: 10.1177/1559325817690849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD), tic disorder (TD), and hyperkinetic syndrome of childhood (attention deficit disorder [ADD]/attention deficit hyperactivity disorder [ADHD]) are disorders recently defined as abnormal connectivity spectrum disorders (ACSDs) because they show a similar pattern of abnormal brain connectivity. This study examines whether these disorders are associated with exposure to thimerosal, a mercury (Hg)-based preservative. METHODS A hypothesis testing case-control study evaluated the Vaccine Safety Datalink for the potential dose-dependent odds ratios (ORs) for diagnoses of ASD, TD, and ADD/ADHD compared to controls, following exposure to Hg from thimerosal-containing Haemophilus influenzae type b vaccines administrated within the first 15 months of life. Febrile seizures, cerebral degeneration, and unspecified disorders of metabolism, which are not biologically plausibly linked to thimerosal, were examined as control outcomes. RESULTS On a per 25 μg Hg basis, cases diagnosed with ASD (OR = 1.493), TD (OR = 1.428), or ADD/ADHD (OR = 1.503) were significantly (P < .001) more likely than controls to have received increased Hg exposure. Similar relationships were observed when separated by gender. Cases diagnosed with control outcomes were no more likely than controls to have received increased Hg exposure. CONCLUSION The results suggest that Hg exposure from thimerosal is significantly associated with the ACSDs of ASD, TD, and ADD/ADHD.
Collapse
Affiliation(s)
- David A. Geier
- Department of Research, The Institute of Chronic Illnesses, Inc, Silver Spring, MD, USA
- CoMeD, Inc, Silver Spring, MD, USA
| | - Janet K. Kern
- Department of Research, The Institute of Chronic Illnesses, Inc, Silver Spring, MD, USA
- CoMeD, Inc, Silver Spring, MD, USA
- CONEM US Autism Research Group, Allen, TX, USA
| | - Kristin G. Homme
- International Academy of Oral Medicine and Toxicology, ChampionsGate, FL, USA
| | - Mark R. Geier
- Department of Research, The Institute of Chronic Illnesses, Inc, Silver Spring, MD, USA
- CoMeD, Inc, Silver Spring, MD, USA
| |
Collapse
|