1
|
Osman Mohammed RM, Huang Y, Guan X, Huang X, Deng S, Yang R, Li J, Li J. Cytotoxic cardiac glycosides from the root of Streblus asper. PHYTOCHEMISTRY 2022; 200:113239. [PMID: 35623471 DOI: 10.1016/j.phytochem.2022.113239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Bioassay-guided separation of the root of Streblus asper led to the identification of six undescribed cardiac glycosides, including a rare cardiac glycoside dimer, along with twelve previously reported analogues. Their structures were determined on the basis of analyses of spectroscopic methods (1D and 2D-NMR spectroscopy), high-resolution electrospray ionization mass spectrometry (HRESIMS), circular dichroism (CD), and comparison of their spectroscopic data with previously reported data. Regarding their cytotoxic activities, microculture tetrazolium assays showed that all isolated cardiac glycosides strongly inhibited MCC-803, T24, SKOV-3, HepG2, Wi-38, and A549 cancer cell lines, with IC50 values ranging from 0.075 μM to 0.752 μM. One cardiac glycoside, a rare cardiac glycoside dimer, exhibited the strongest activity against the six cancer cell lines, with IC50 values ranging from 0.075 μM to 0.214 μM. In addition, the structure-activity relationships (SARs) of cardiac glycosides were investigated. In summary, S. asper showed marked cytotoxicity to several cancer cell lines, which could be meaningful for discovering new anticancer agents.
Collapse
Affiliation(s)
- Rehab Mobark Osman Mohammed
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China; Department of Pharmaceutical Cognosy, Faculty of Pharmacy, University of AL-Neelain, Khartoum, Sudan
| | - Yan Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Xinlan Guan
- Peoples' Hospital of Pubei, Pubei, 535300, China
| | - Xishan Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Shengping Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Ruiyun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Jian Li
- Peoples' Hospital of Pubei, Pubei, 535300, China.
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
2
|
SIVAMARUTHI BS, PRASANTH MI, KESIKA P, Tencomnao T, CHAIYASUT C. Functional properties of Streblus asper Lour.: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Tewin Tencomnao
- Chulalongkorn University, Thailand; Chulalongkorn University, Thailand
| | | |
Collapse
|
3
|
Assessment of behavioral changes and antitumor effects of silver nanoparticles synthesized using diosgenin in mice model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Ren Y, Wu S, Chen S, Burdette JE, Cheng X, Kinghorn AD. Interaction of (+)-Strebloside and Its Derivatives with Na +/K +-ATPase and Other Targets. Molecules 2021; 26:5675. [PMID: 34577146 PMCID: PMC8467840 DOI: 10.3390/molecules26185675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Docking profiles for (+)-strebloside, a cytotoxic cardiac glycoside identified from Streblus asper, and some of its derivatives and Na+/K+-ATPase have been investigated. In addition, binding between (+)-strebloside and its aglycone, strophanthidin, and several of their other molecular targets, including FIH-1, HDAC, KEAP1 and MDM2 (negative regulators of Nrf2 and p53, respectively), NF-κB, and PI3K and Akt1, have been inspected and compared with those for digoxin and its aglycone, digoxigenin. The results showed that (+)-strebloside, digoxin, and their aglycones bind to KEAP1 and MDM2, while (+)-strebloside, strophanthidin, and digoxigenin dock to the active pocket of PI3K, and (+)-strebloside and digoxin interact with FIH-1. Thus, these cardiac glycosides could directly target HIF-1, Nrf2, and p53 protein-protein interactions, Na+/K+-ATPase, and PI3K to mediate their antitumor activity. Overall, (+)-strebloside seems more promising than digoxin for the development of potential anticancer agents.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| | - Sijin Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| | - Sijie Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| |
Collapse
|
5
|
Sahu RK, Aboulthana WM, Mehta DK. Phyto-Phospholipid Complexation as a Novel Drug Delivery System for Management of Cancer with Better Bioavailability: Current Perspectives and Future Prospects. Anticancer Agents Med Chem 2021; 21:1403-1412. [PMID: 33176666 DOI: 10.2174/1871520620999201110191741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the foremost cause of death, and it supports the need for the identification of novel anticancer drugs to improve the efficacy of current-therapy. While the synthetic anticancer drug is associated with numerous side effects. Hence the plant active or phytoconstituents are in high demand for the treatment of cancer due to minimum side effects. But the polar nature of phytoconstituents hindered the absorption of the drug and lowered the therapeutic efficacy. The plant activity incorporated into Phyto-phospholipid Complexation can enhance bioavailability and improved therapeutic efficacy. In this review article, advantages, limitation and application of Phyto-phospholipid complexes have been illustrated. The article highlights the application of Phyto-phospholipid complexes as a promising drug carrier system to treat cancer.
Collapse
Affiliation(s)
- Ram K Sahu
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar, Assam, 788011, India
| | - Wael M Aboulthana
- Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, 33 Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Dinesh K Mehta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana-Ambala (HR), 133207, India
| |
Collapse
|
6
|
Ren Y, Tan Q, Heath K, Wu S, Wilson JR, Ren J, Shriwas P, Yuan C, Ngoc Ninh T, Chai HB, Chen X, Soejarto DD, Johnson ME, Cheng X, Burdette JE, Kinghorn AD. Cytotoxic and non-cytotoxic cardiac glycosides isolated from the combined flowers, leaves, and twigs of Streblus asper. Bioorg Med Chem 2020; 28:115301. [PMID: 31953129 DOI: 10.1016/j.bmc.2019.115301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 10/25/2022]
Abstract
A new non-cytotoxic [(+)-17β-hydroxystrebloside (1)] and two known cytotoxic [(+)-3'-de-O-methylkamaloside (2) and (+)-strebloside (3)] cardiac glycosides were isolated and identified from the combined flowers, leaves, and twigs of Streblus asper collected in Vietnam, with the absolute configuration of 1 established from analysis of its ECD and NMR spectroscopic data and confirmed by computational ECD calculations. A new 14,21-epoxycardanolide (3a) was synthesized from 3 that was treated with base. A preliminary structure-activity relationship study indicated that the C-14 hydroxy group and the C-17 lactone unit and the established conformation are important for the mediation of the cytotoxicity of 3. Molecular docking profiles showed that the cytotoxic 3 and its non-cytotoxic analogue 1 bind differentially to Na+/K+-ATPase. Compound 3 docks deeply in the Na+/K+-ATPase pocket with a sole pose, and its C-10 formyl and C-5, C-14, and C-4' hydroxy groups may form hydrogen bonds with the side-chains of Glu111, Glu117, Thr797, and Arg880 of Na+/K+-ATPase, respectively. However, 1 fits the cation binding sites with at least three different poses, which all depotentiate the binding between 1 and Na+/K+-ATPase. Thus, 3 was found to inhibit Na+/K+-ATPase, but 1 did not. In addition, the cytotoxic and Na+/K+-ATPase inhibitory 3 did not affect glucose uptake in human lung cancer cells, against which it showed potent activity, indicating that this cardiac glycoside mediates its cytotoxicity by targeting Na+/K+-ATPase but not by interacting with glucose transporters.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Qingwei Tan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Kimberly Heath
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Sijin Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - James R Wilson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Jinhong Ren
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Pratik Shriwas
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States; Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, United States
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, United States
| | - Tran Ngoc Ninh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Hee-Byung Chai
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States; Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Ohio University, Athens, OH 45701, United States
| | - Djaja D Soejarto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States; Science and Education, Field Museum of Natural History, Chicago, IL 60605, United States
| | - Michael E Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States; Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
7
|
Zhang G, Hao L, Zhou D, Liu W, Li C, Su S, Xu X, Huang X, Li J. A new phenylpropanoid glycoside from the bark of Streblus ilicifolius (Vidal) Corner. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.103962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Medicinal plants and natural products can play a significant role in mitigation of mercury toxicity. Interdiscip Toxicol 2019; 11:247-254. [PMID: 31762676 PMCID: PMC6853017 DOI: 10.2478/intox-2018-0024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/11/2018] [Indexed: 12/18/2022] Open
Abstract
Mercury is a heavy metal of considerable toxicity. Scientific literature reveals various plants and plant derived natural products, i.e., phytochemicals, which can alleviate experimentally induced mercury toxicity in animals. The present review attempts to collate those experimental studies on medicinal plants and phytochemicals with ameliorative effects on mercury toxicity. A literature survey was carried out by using Google, Scholar Google, Scopus and Pub-Med. Only the scientific journal articles found in the internet for the last two decades (1998–2018) were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded. The literature survey revealed that in pre-clinical studies 27 medicinal plants and 27 natural products exhibited significant mitigation from mercury toxicity in experimental animals. Clinical investigations were not found in the literature. Admissible research in this area could lead to development of a potentially effective agent from the plant kingdom for clinical management of mercury toxicity in humans.
Collapse
|
9
|
Prasansuklab A, Theerasri A, Payne M, Ung AT, Tencomnao T. Acid-base fractions separated from Streblus asper leaf ethanolic extract exhibited antibacterial, antioxidant, anti-acetylcholinesterase, and neuroprotective activities. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:223. [PMID: 30041641 PMCID: PMC6057052 DOI: 10.1186/s12906-018-2288-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Streblus asper is a well-known plant native to Southeast Asia. Different parts of the plant have been traditionally used for various medicinal purposes. However, there is very little scientific evidence reporting its therapeutic benefits for potential treatment of Alzheimer's disease (AD). The study aimed to evaluate antibacterial, antioxidant, acetylcholinesterase (AChE) inhibition, and neuroprotective properties of S. asper leaf extracts with the primary objective of enhancing therapeutic applications and facilitating activity-guided isolation of the active chemical constituents. METHODS The leaves of S. asper were extracted in ethanol and subsequently fractionated into neutral, acid and base fractions. The phytochemical constituents of each fraction were analyzed using GC-MS. The antibacterial activity was evaluated using a broth microdilution method. The antioxidant activity was determined using DPPH and ABTS radical scavenging assays. The neuroprotective activity against glutamate-induced toxicity was tested on hippocampal neuronal HT22 cell line by evaluating the cell viability using MTT assay. The AChE inhibitory activity was screened by thin-layer chromatography (TLC) bioautographic method. RESULTS The partition of the S. asper ethanolic leaf extract yielded the highest mass of phytochemical constitutions in the neutral fraction and the lowest in the basic fraction. Amongst the three fractions, the acidic fraction showed the strongest antibacterial activity against gram-positive bacteria. The antioxidant activities of three fractions were found in the order of acidic > basic > neutral, whereas the decreasing order of neuroprotective activity was neutral > basic > acidic. TLC bioautography revealed one component in the neutral fraction exhibited anti-AChE activity. While in the acid fraction, two components showed inhibitory activity against AChE. GC-MS analysis of three fractions showed the presence of major phytochemical constituents including terpenoids, steroids, phenolics, fatty acids, and lipidic plant hormone. CONCLUSIONS Our findings have demonstrated the therapeutic potential of three fractions extracted from S. asper leaves as a promising natural source for neuroprotective agents with additional actions of antibacterials and antioxidants, along with AChE inhibitors that will benefit in the development of new natural compounds in therapies against AD.
Collapse
Affiliation(s)
- Anchalee Prasansuklab
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Atsadang Theerasri
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Matthew Payne
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Alison T. Ung
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
10
|
Ren Y, Chen WL, Lantvit DD, Sass EJ, Shriwas P, Ninh TN, Chai HB, Zhang X, Soejarto DD, Chen X, Lucas DM, Swanson SM, Burdette JE, Kinghorn AD. Cardiac Glycoside Constituents of Streblus asper with Potential Antineoplastic Activity. JOURNAL OF NATURAL PRODUCTS 2017; 80:648-658. [PMID: 27983842 PMCID: PMC5365359 DOI: 10.1021/acs.jnatprod.6b00924] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Three new (1-3) and two known (4 and 5) cytotoxic cardiac glycosides were isolated and characterized from a medicinal plant, Streblus asper Lour. (Moraceae), collected in Vietnam, with six new analogues and one known derivative (5a-g) synthesized from (+)-strebloside (5). A preliminary structure-activity relationship study indicated that the C-10 formyl and C-5 and C-14 hydroxy groups and C-3 sugar unit play important roles in the mediation of the cytotoxicity of (+)-strebloside (5) against HT-29 human colon cancer cells. When evaluated in NCr nu/nu mice implanted intraperitoneally with hollow fibers facilitated with either MDA-MB-231 human breast or OVCAR3 human ovarian cancer cells, (+)-strebloside (5) showed significant cell growth inhibitory activity in both cases, in the dose range 5-30 mg/kg.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Wei-Lun Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Daniel D. Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Ellen J. Sass
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Pratik Shriwas
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, United States
| | - Tran Ngoc Ninh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hee-Byung Chai
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, United States
| | - Djaja D. Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- Science and Education, Field Museum of Natural History, Chicago, IL 60605, United States
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, United States
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, United States
| | - David M. Lucas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Steven M. Swanson
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
- Corresponding Author.
| |
Collapse
|