1
|
De Barros JA, Macartney MJ, Notley SR, Meade RD, Kenny GP. The utility of heart rate and heart rate variability to identify limits of tolerance to moderate-intensity work in the heat: a secondary analysis. Appl Physiol Nutr Metab 2024; 49:539-546. [PMID: 38170965 DOI: 10.1139/apnm-2023-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We investigated the utility of heart rate (HR) and heart rate variability (HRV) for identifying individuals who may terminate work early due to excessive heat strain. Forty-eight men and women (median = 36 years; Q1 = 20 years; Q3 = 54 years) attempted 180 min of moderate-intensity work at a fixed metabolic rate (∼200 W/m2; ∼3.5 METs) in a hot environment (wet-bulb globe temperature: 32 °C). Receiver operating characteristics (ROC) curves were used to identify the ability of indices of HR (absolute HR, percentage of maximum HR, percentage of HR reserve) and HRV (root-mean-square of successive differences (RMSSD), high-frequency power, and detrended fluctuation analysis component alpha 1 (DFA α1)) to discriminate between participants who completed the 180 min work bout or terminated prematurely. Participants who terminated work prematurely (n = 26) exhibited higher HR and percentage of HR measures, as well as reduced RMSSD and DFA α1 after the first hour of work compared to participants who completed the bout. The discriminative utility of HR and HRV indices was strongest within the first hour of work, with percentage of HR reserve demonstrating excellent discriminative power (ROC area under curve (AUC) of 0.8). Stratifying participants by age and sex improved ROC AUC point estimates for most indices, particularly in female participants. The study provides preliminary evidence supporting the use of noninvasive cardiac monitoring for predicting work tolerance in healthy individuals exposed to occupational heat stress. HR and percentage of HR reserve were suggested to discriminate work termination most effectively. Further investigations are warranted to explore the influence of individual factors and refine the discriminative thresholds for early identification of excessive occupational heat strain.
Collapse
Affiliation(s)
- Jordan A De Barros
- School of Graduate Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Michael J Macartney
- School of Graduate Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Defence, Defence Science and Technology Group, Melbourne, VIC 3207, Australia
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
2
|
Arendt Nielsen T, Lundbye-Christensen S, Krasimirova Dimitrova Y, Riahi S, Brock B, Mohr Drewes A, Brock C. Adynamic response to cold pain reflects dysautonomia in type 1 diabetes and polyneuropathy. Sci Rep 2023; 13:11318. [PMID: 37443134 PMCID: PMC10344906 DOI: 10.1038/s41598-023-37617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiac autonomic neuropathy (CAN), widely assessed by heart rate variability (HRV), is a common complication of long-term diabetes. We hypothesized that HRV dynamics during tonic cold pain in individuals with type 1 diabetes mellitus (T1DM) could potentially demask CAN. Forty-eight individuals with long-term T1DM and distal symmetrical polyneuropathy and 21 healthy controls were included. HRV measures were retrieved from 24-h electrocardiograms. Moreover, ultra-short-term HRV recordings were used to assess the dynamic response to the immersion of the hand into 2 °C cold water for 120 s. Compared to healthy, the T1DM group had expectedly lower 24-h HRV measures for most components (p < 0.01), indicating dysautonomia. In the T1DM group, exposure to cold pain caused diminished sympathetic (p < 0.001) and adynamic parasympathetic (p < 0.01) HRV responses. Furthermore, compared to healthy, cold pain exposure caused lower parasympathetic (RMSSD: 4% vs. 20%; p = 0.002) and sympathetic responses (LF: 11% vs. 73%; p = 0.044) in the T1MD group. QRISK3-scores are negatively correlated with HRV measures in 24-h and ultra-short-term recordings. In T1DM, an attenuated sympathovagal response was shown as convincingly adynamic parasympathetic responses and diminished sympathetic adaptability, causing chronometric heart rhythm and rigid neurocardiac regulation threatening homeostasis. The findings associate with an increased risk of cardiovascular disease, emphasizing clinical relevance.
Collapse
Affiliation(s)
- Thomas Arendt Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | - Søren Lundbye-Christensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Unit of Clinical Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Sam Riahi
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Birgitte Brock
- Steno Diabetes Center Copenhagen, Region Hovedstaden, Gentofte, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| | - Christina Brock
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark.
- Steno Diabetes Center North Denmark, Aalborg, Denmark.
| |
Collapse
|
3
|
Overnight sleeping heart rate variability of Army recruits during a 12-week basic military training course. Eur J Appl Physiol 2022; 122:2135-2144. [PMID: 35833968 PMCID: PMC9381457 DOI: 10.1007/s00421-022-04987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
Purpose This study aimed to quantify sleeping heart rate (HR) and HR variability (HRV) alongside circulating tumor necrosis factor alpha (TNFα) concentrations during 12-week Basic Military Training (BMT). We hypothesised that, despite a high allostatic load, BMT would increase cardiorespiratory fitness and HRV, while lowering both sleeping HR and TNFα in young healthy recruits. Methods Sixty-three recruits (18–43 years) undertook ≥ 2 overnight cardiac frequency recordings in weeks 1, 8 and 12 of BMT with 4 h of beat-to-beat HR collected between 00:00 and 06:00 h on each night. Beat-to-beat data were used to derive HR and HRV metrics which were analysed as weekly averages (totalling 8 h). A fasted morning blood sample was collected in the equivalent weeks for the measurement of circulating TNFα concentrations and predicted VO2max was assessed in weeks 2 and 8. Results Predicted VO2max was significantly increased at week 8 (+ 3.3 ± 2.6 mL kg−1 min−1; p < 0.001). Sleeping HR (wk1, 63 ± 7 b min−1) was progressively reduced throughout BMT (wk8, 58 ± 6; wk12, 55 ± 6 b min−1; p < 0.01). Sleeping HRV reflected by the root mean square of successive differences (RMSSD; wk1, 86 ± 50 ms) was progressively increased (wk8, 98 ± 50; wk12, 106 ± 52 ms; p < 0.01). Fasted circulating TNFα (wk1, 9.1 ± 2.8 pg/mL) remained unchanged at wk8 (8.9 ± 2.5 pg/mL; p = 0.79) but were significantly reduced at wk12 (8.0 ± 2.4 pg/mL; p < 0.01). Conclusion Increased predicted VO2max, HRV and reduced HR during overnight sleep are reflective of typical cardiorespiratory endurance training responses. These results indicate that recruits are achieving cardiovascular health benefits despite the high allostatic load associated with the 12-week BMT.
Collapse
|
4
|
De Barros JA, Macartney MJ, Peoples GE, Notley SR, Herry CL, Kenny GP. Effects of sex and wet-bulb globe temperature on heart rate variability during prolonged moderate-intensity exercise: A secondary analysis. Appl Physiol Nutr Metab 2022; 47:725-736. [PMID: 35290752 DOI: 10.1139/apnm-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex-differences in heart rate (HR) and heart rate variability (HRV), a surrogate of cardiac autonomic modulation, are evident during rest and exercise in young healthy individuals. However, it remains unclear whether sex impacts HRV during prolonged exercise at differing levels of environmental heat stress. Therefore, we completed a secondary analysis upon the effects of sex and wet-bulb globe temperature (WBGT) on HR and HRV during prolonged exercise. To achieve this, HR and HRV were assessed in non-endurance-trained and non-heat-acclimatized healthy men (n=19) and women (n=15) aged 18-45 years during 180-min treadmill walking at a moderate metabolic rate (200 W/m2: equivalent to ~35% peak aerobic power) in 16, 24, 28, and 32°C WBGT. In the final 5 min prior to exercise termination, HR was observed to be higher in women relative to men in all but the 32°C WBGT. Although no sex-differences were observed for the HRV metric of root-mean-square of successive differences, high frequency power was higher in women relative to men across WBGT conditions. These findings indicate that, in healthy non-heat-acclimatized individuals, women respond to prolonged exercise-heat stress with a greater increase in HR despite cardiac vagal autonomic modulation remaining equal or increasing compared to men. Novelty points. • Prior to exercise termination, females respond with a greater increase in heart rate under all wet-bulb globe temperatures except the hottest (32°C). • Sex influenced heart rate variability (HRV) metrics during all wet-bulb globe temperatures, but results were mixed. • Further characterisation of HRV sex differences remains an important area of research.
Collapse
Affiliation(s)
| | - Michael J Macartney
- University of Wollongong, 8691, Wollongong, Australia.,University of New South Wales, 7800, Sydney, New South Wales, Australia;
| | - Gregory E Peoples
- University of Wollongong, 8691, School of Medicine, Wollongong, New South Wales, Australia;
| | - Sean R Notley
- University of Ottawa, Faculty of Health Sciences, Ottawa, Ontario, Canada;
| | - Christophe L Herry
- Ottawa Hospital Research Institute, 10055, Clinical Epidemiology, Ottawa, Ontario, Canada;
| | - Glen P Kenny
- University of Ottawa, 6363, Ottawa, Canada, K1N 6N5.,Ottawa Hospital Research Institute, 10055, Ottawa, Canada, K1Y 4E9;
| |
Collapse
|
5
|
The impact of age, type 2 diabetes and hypertension on heart rate variability during rest and exercise at increasing levels of heat stress. Eur J Appl Physiol 2022; 122:1249-1259. [PMID: 35239038 DOI: 10.1007/s00421-022-04916-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE In older adults with type 2 diabetes (T2D) and hypertension (HTN), cardiac autonomic modulation is markedly attenuated during exercise-heat stress. However, the extent to which this impairment is evident under increasing levels of heat stress remains unknown. METHODS We examined heart rate variability (HRV), a surrogate of cardiac autonomic modulation, during incremental exercise-heat stress exposures in young (20-30 years) and middle-aged-to-older individuals (50-70 years) without and with T2D and HTN. Thirteen young and healthy (Young, n = 13) and 37 older men without (Older, n = 14) and with HTN (n = 13) or T2D (n = 10) performed 180-min treadmill walking at a fixed metabolic rate (~ 200 W/m2; ~ 3.5 METs) in a differing wet-bulb globe temperature (WBGT; 16 °C, 24 °C, 28 °C, and 32 °C). Electrocardiogram (ECG) and core temperature measurements were recorded throughout. Data were analysed using 5-min averaged epochs following 60-min exercise, which represented the last common timepoint across groups and conditions. RESULTS Ageing did not significantly reduce HRV during increasing exercise-heat stress (all p > 0.050). However, T2D and HTN modified HRV during exercise-heat stress such that Detrended Fluctuation Analysis (DFA) α1 (p = 0.012) and the cardiac sympathetic index (p = 0.037) were decreased compared to Older in all except the warmest WBGT condition (32 °C). CONCLUSION Our unique observations indicate that, relative to their younger counterparts, HRV in healthy older individuals is not perturbed during exercise heat-stress. However, relative to their age-matched healthy counterparts, HRV is reduced during exercise-heat stress in individuals with age-associated chronic conditions, indicative of cardiac autonomic dysfunction.
Collapse
|
6
|
Nordine M, Schwarz A, Bruckstein R, Gunga HC, Opatz O. The Human Dive Reflex During Consecutive Apnoeas in Dry and Immersive Environments: Magnitude and Synchronicity. Front Physiol 2022; 12:725361. [PMID: 35058791 PMCID: PMC8764278 DOI: 10.3389/fphys.2021.725361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The human dive reflex (HDR), an O2 conserving reflex, is characterised by an interplay of central parasympathetic and peripheral sympathetic reactions, which are presumed to operate independently of each other. The HDR is fully activated during apnoea with facial immersion in water and complete immersion in water is thought to increase the magnitude of HDR during consecutive apnoeas. A comparison of HDR activity between consecutive apnoeas in full-body immersion with consecutive apnoeas in dry conditions has not been fully explored. Also, the interplay between parasympathetic and sympathetic reactions involved in the HDR has not been thoroughly analysed. Methods: 11 human volunteers performed 3 consecutive 60 s apnoeas with facial immersion in dry conditions (FIDC) and 3 consecutive apnoeas with facial immersion in full immersion (FIFI). Heart rate (HR), R-R interval (RRI), finger pulse amplitude (FPA), splenic width (SW) and SpO2 were all measured before, during and after apnoeas. A one-way ANOVA using Dunn's post hoc test was performed to assess HDR activity, and a Pearson's correlation test was performed to assess HDR synchronisation between physiological parameters during both conditions. Results: Although HDR activity was not significantly different between both conditions, HR and RRI showed progressively greater changes during FIFI compared with FIDC, while SW and FPA changes were relatively equivalent. During FIDC, significant correlations were found between SW & SpO2 and FPA & SpO2. During FIFI, significant correlations were found between RRI & FPA, SW & FPA, HR & SpO2 and FPA & SpO2. Discussion: While there was no significant difference found between HDR activity during FIDC and FIFI, consecutive apnoeas during FIFI triggered a greater magnitude of cardiac activity. Furthermore, significant correlations between RRI and SW with FPA indicate a crosstalk between parasympathetic tone with splenic contraction and increased peripheral sympathetic outflow during FIFI compared to FIDC. In conclusion, HDR activity during consecutive apnoeas does not differ between FIDC and FIFI. There appears to be however a greater level of synchronicity during apnoeas in FIFI compared to FIDC and that this is most likely due to the physiological effects of immersion, which could induce neural recruitment and increased cross talk of HDR pathways.
Collapse
Affiliation(s)
- Michael Nordine
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| | - Anton Schwarz
- Monash School of Medicine, Monash University, Clayton, VIC, Australia
| | - Renana Bruckstein
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| | - Hanns-Christian Gunga
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| | - Oliver Opatz
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Dependence of Heart Rate Variability Indices on the Mean Heart Rate in Women with Well-Controlled Type 2 Diabetes. J Clin Med 2021; 10:jcm10194386. [PMID: 34640404 PMCID: PMC8509544 DOI: 10.3390/jcm10194386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Heart rate variability (HRV) is a method used to evaluate the presence of cardiac autonomic neuropathy (CAN) because it is usually attributed to oscillations in cardiac autonomic nerve activity. Recent studies in other pathologies suggest that HRV indices are strongly related to mean heart rate, and this does not depend on autonomic activity only. This study aimed to evaluate the correlation between the mean heart rate and the HRV indices in women patients with well-controlled T2DM and a control group. HRV was evaluated in 19 T2DM women and 44 healthy women during basal supine position and two maneuvers: active standing and rhythmic breathing. Time-domain (SDNN, RMSSD, pNN20) and frequency-domain (LF, HF, LF/HF) indices were obtained. Our results show that meanNN, age, and the maneuvers are the main predictors of most HRV indices, while the diabetic condition was a predictor only for pNN20. Given the known reduced HRV in patients with T2DM, it is clinically important that much of the HRV indices are dependent on heart rate irrespective of the presence of T2DM. Moreover, the multiple regression analyses evidenced the multifactorial etiology of HRV.
Collapse
|
8
|
Macartney MJ, Ghodsian MM, Noel-Gough B, McLennan PL, Peoples GE. DHA-Rich Fish Oil Increases the Omega-3 Index in Healthy Adults and Slows Resting Heart Rate without Altering Cardiac Autonomic Reflex Modulation. J Am Coll Nutr 2021; 41:637-645. [PMID: 34379997 DOI: 10.1080/07315724.2021.1953417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Regular fish consumption, a rich source of long-chain omega-3 (ω-3) docosahexaenoic acid (DHA), modifies cardiac electrophysiology. However, human studies investigating fish oil and cardiac electrophysiology have predominantly supplemented therapeutic (high) doses of fish oil (often ω-3 eicosapentaenoic acid (EPA) rich sources). This study examined whether non-therapeutic doses of DHA-rich fish oil modulate cardiac electrophysiology at rest and during cardiovascular reflex challenges to the same extent, if at all, in young healthy adults. Participants (N = 20) were supplemented (double-blinded) with (2x1g.day-1) soy oil (Control n = 9) or DHA-rich tuna fish oil (FO n = 11) providing DHA: 560 mg and EPA: 140 mg. The Omega-3 Index (O3I; erythrocyte membrane % EPA + DHA), heart rate (HR) and HR variability (HRV) were analyzed during rest, maximal isometric handgrip and cold diving reflex challenges at baseline and following 8 weeks. The baseline O3I (Control: 5.1 ± 1.0; FO: 5.4 ± 0.9; P > 0.05), resting HR (Control: 65 ± 12bpm; FO: 66 ± 8bpm; P > 0.05) and HRV metrics did not significantly differ between the groups prior to supplementation. Relative to the control group, the O3I was increased (Control: 5.0 ± 1.1; FO: 7.8 ± 1.2; P < 0.001), and resting HR was slowed in the FO group following supplementation (Control: 66 ± 9bpm; FO: 61 ± 6bpm; P = 0.046). However, no significant (P > 0.05) between-group differences were observed in HR responsiveness or any indices of HRV during reflex challenges. In young healthy adults, dietary achievable doses of ω-3 DHA-rich fish oil exerted a direct slowing effect on resting HR, without compromising the HR response to either dominant sympathetic or parasympathetic modulation.
Collapse
Affiliation(s)
- Michael J Macartney
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Mathew M Ghodsian
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia
| | - Bransen Noel-Gough
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia
| | - Peter L McLennan
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Gregory E Peoples
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| |
Collapse
|