1
|
Kumar G, Dey SK, Kundu S. Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci 2020; 259:118377. [PMID: 32898526 DOI: 10.1016/j.lfs.2020.118377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
The endothelium is the innermost vascular lining performing significant roles all over the human body while maintaining the blood pressure at physiological levels. Malfunction of endothelium is thus recognized as a biomarker linked with many vascular diseases including but not limited to atherosclerosis, hypertension and thrombosis. Alternatively, prevention of endothelial malfunctioning or regulating the functions of its associated physiological partners like endothelial nitric oxide synthase can prevent the associated vascular disorders which account for the highest death toll worldwide. While many anti-hypertensive drugs are available commercially, a comprehensive description of the key physiological roles of the endothelium and its regulation by endothelial nitric oxide synthase or vice versa is the need of the hour to understand its contribution in vascular homeostasis. This, in turn, will help in designing new therapeutics targeting endothelial nitric oxide synthase or its interacting partners present in the cellular pool. This review describes the central role of vascular endothelium in the regulation of endothelial nitric oxide synthase while outlining the emerging drug targets present in the vasculature with potential to treat vascular disorders including hypertension.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India
| | - Sanjay Kumar Dey
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India; Center for Advanced Biotechnology and Medicine, Rutgers University, NJ 08854, USA
| | - Suman Kundu
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India.
| |
Collapse
|
2
|
Lazar E, Benedek T, Korodi S, Rat N, Lo J, Benedek I. Stem cell-derived exosomes - an emerging tool for myocardial regeneration. World J Stem Cells 2018; 10:106-115. [PMID: 30190780 PMCID: PMC6121000 DOI: 10.4252/wjsc.v10.i8.106] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to represent the number one cause of death and disability in industrialized countries. The most severe form of CVD is acute myocardial infarction (AMI), a devastating disease associated with high mortality and disability. In a substantial proportion of patients who survive AMI, loss of functional cardiomyocytes as a result of ischaemic injury leads to ventricular failure, resulting in significant alteration to quality of life and increased mortality. Therefore, many attempts have been made in recent years to identify new tools for the regeneration of functional cardiomyocytes. Regenerative therapy currently represents the ultimate goal for restoring the function of damaged myocardium by stimulating the regeneration of the infarcted tissue or by providing cells that can generate new myocardial tissue to replace the damaged tissue. Stem cells (SCs) have been proposed as a viable therapy option in these cases. However, despite the great enthusiasm at the beginning of the SC era, justified by promising initial results, this therapy has failed to demonstrate a significant benefit in large clinical trials. One interesting finding of SC studies is that exosomes released by mesenchymal SCs (MSCs) are able to enhance the viability of cardiomyocytes after ischaemia/reperfusion injury, suggesting that the beneficial effects of MSCs in the recovery of functional myocardium could be related to their capacity to secrete exosomes. Ten years ago, it was discovered that exosomes have the unique property of transferring miRNA between cells, acting as miRNA nanocarriers. Therefore, exosome-based therapy has recently been proposed as an emerging tool for cardiac regeneration as an alternative to SC therapy in the post-infarction period. This review aims to discuss the emerging role of exosomes in developing innovative therapies for cardiac regeneration as well as their potential role as candidate biomarkers or for developing new diagnostic tools.
Collapse
Affiliation(s)
- Erzsebet Lazar
- Department of Internal Medicine, Clinic of Haematology and Bone Marrow Transplantation, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540042, Romania
| | - Theodora Benedek
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| | - Szilamer Korodi
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| | - Nora Rat
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| | - Jocelyn Lo
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Imre Benedek
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| |
Collapse
|