1
|
Ataie-Ashtiani S, Forbes B. A Review of the Biosynthesis and Structural Implications of Insulin Gene Mutations Linked to Human Disease. Cells 2023; 12:cells12071008. [PMID: 37048081 PMCID: PMC10093311 DOI: 10.3390/cells12071008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
The discovery of the insulin hormone over 100 years ago, and its subsequent therapeutic application, marked a key landmark in the history of medicine and medical research. The many roles insulin plays in cell metabolism and growth have been revealed by extensive investigations into the structure and function of insulin, the insulin tyrosine kinase receptor (IR), as well as the signalling cascades, which occur upon insulin binding to the IR. In this review, the insulin gene mutations identified as causing disease and the structural implications of these mutations will be discussed. Over 100 studies were evaluated by one reviewing author, and over 70 insulin gene mutations were identified. Mutations may impair insulin gene transcription and translation, preproinsulin trafficking and proinsulin sorting, or insulin-IR interactions. A better understanding of insulin gene mutations and the resultant pathophysiology can give essential insight into the molecular mechanisms underlying impaired insulin biosynthesis and insulin-IR interaction.
Collapse
|
2
|
Tian M, Feng Y, Liu Y, Wang H. Case report: A 10-year prognosis of neonatal diabetes caused by a novel INS gene mutation. Front Endocrinol (Lausanne) 2023; 13:1086785. [PMID: 36686471 PMCID: PMC9852905 DOI: 10.3389/fendo.2022.1086785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Background Neonatal diabetes mellitus (NDM) is a rare form of diabetes. We analyzed a novel insulin gene (INS) mutation of a Chinese permanent neonatal diabetes mellitus (PNDM) patient to explore the clinical and genetic characteristics and put forward some opinions on treatment and its long-term management. Case description A proband was recruited who was diagnosed with permanent neonatal diabetes on his first day after birth. His clinical and follow-up data were collected for 10 years. All of the family members were given an oral glucose tolerance test. Whole exome sequencing was performed on the proband, and the genomic DNA of family members was used for verification by first-generation Sanger sequencing technology. The pathogenic variant was screened according to the American College of Medical Genetics and Genomics classification guidelines and the clinical phenotype of the patient. Diagnostic assessment The proband was diagnosed on the first day after birth, presenting with low birth weight, progressive hyperglycemia, and insulin deficiency. His parents and grandfathers were confirmed to have normal blood sugar levels. A novel homozygous mutation of c.1T>C in the INS gene was detected in the proband, located in the initiation codon. The heterozygous mutations were found in four family members, including his mother, father, and grandfathers. With regular insulin injections, long-term regular follow-up, close monitoring of blood glucose, balanced exercise and diet, and psychological and mutual family support, the blood glucose level was well controlled; there were no acute or chronic complications during this decade. The patient's growth and nervous system development are now no different to those of the same age. Conclusion A favorable prognosis is presented for a permanent neonatal diabetes mellitus (PNDM) patient with a novel mutation in the INS gene in China. The present findings indicate that the genetic diagnosis, early use of insulin, close monitoring of blood glucose, and psychological and mutual family support for patients with INS mutation are necessary for their favorable long-term prognosis.
Collapse
Affiliation(s)
- Mengting Tian
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University) Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Feng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University) Ministry of Education, Sichuan University, Chengdu, China
| | - Yanyan Liu
- Prenatal Diagnosis Center, Department of Obstetrics & Gynecologic, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University) Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Haris B, Mohammed I, Al-Khawaga S, Hussain K. Homozygous Insulin Promotor Gene Mutation Causing Permanent Neonatal Diabetes Mellitus and Childhood Onset Autoantibody Negative Diabetes in the Same Family. Int Med Case Rep J 2022; 15:35-41. [PMID: 35140529 PMCID: PMC8819275 DOI: 10.2147/imcrj.s349424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To report a family with a homozygous INS promotor gene mutation causing permanent neonatal diabetes mellitus (PNDM) in one sibling and autoantibody negative childhood onset diabetes in another sibling. Case Presentation Patient 1 is a 12-year-old girl born at term with low birth weight to a consanguineous family, diagnosed with PNDM at 26 days of life. She presented with ketoacidosis and has a severe course of disease with high insulin requirement. Patient 2 is a 9-year-old girl born at term with normal weight, who presented with ketoacidosis at 2 years of age. Both subjects have negative type 1 autoantibodies. On genetic testing, a mutation in the promoter region of INS gene c.-331 C>G was found in homozygous state in both subjects and in a heterozygous state in parents. Conclusion Homozygous INS gene promotor mutations may present with either PNDM or later onset autoantibody negative diabetes in childhood. This suggests that homozygous INS gene promotor mutations show marked heterogeneity in clinical presentation within individuals in the same family. The pathophysiology of this is not well known but could be related to a number of factors, including the position of the variant, penetrance, other associated genetic defects, HLA etc. Premarital screening and genetic counselling is recommended for highly consanguineous families to reduce occurrence of such conditions.
Collapse
Affiliation(s)
- Basma Haris
- Department of Pediatric Endocrinology, Sidra Medicine, Education City, Doha, Qatar
| | - Idris Mohammed
- Department of Pediatric Endocrinology, Sidra Medicine, Education City, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology, Hamad General Hospital, Doha, Qatar
| | - Khalid Hussain
- Department of Pediatric Endocrinology, Sidra Medicine, Education City, Doha, Qatar
- Correspondence: Khalid Hussain, Department of Pediatric Medicine, Sidra Medicine, Education City, OPC, C6-340 |PO Box 26999, Al Luqta Street, North Campus, Doha, Qatar, Tel +974-4003-7608, Email
| |
Collapse
|
4
|
Støy J, De Franco E, Ye H, Park SY, Bell GI, Hattersley AT. In celebration of a century with insulin - Update of insulin gene mutations in diabetes. Mol Metab 2021; 52:101280. [PMID: 34174481 PMCID: PMC8513141 DOI: 10.1016/j.molmet.2021.101280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background While insulin has been central to the pathophysiology and treatment of patients with diabetes for the last 100 years, it has only been since 2007 that genetic variation in the INS gene has been recognised as a major cause of monogenic diabetes. Both dominant and recessive mutations in the INS gene are now recognised as important causes of neonatal diabetes and offer important insights into both the structure and function of insulin. It is also recognised that in rare cases, mutations in the INS gene can be found in patients with diabetes diagnosed outside the first year of life. Scope of Review This review examines the genetics and clinical features of monogenic diabetes resulting from INS gene mutations from the first description in 2007 and includes information from 389 patients from 292 families diagnosed in Exeter with INS gene mutations. We discuss the implications for diagnosing and treating this subtype of monogenic diabetes. Major Conclusions The dominant mutations in the INS gene typically affect the secondary structure of the insulin protein, usually by disrupting the 3 disulfide bonds in mature insulin. The resulting misfolded protein results in ER stress and beta-cell destruction. In contrast, recessive INS gene mutations typically result in no functional protein being produced due to reduced insulin biosynthesis or loss-of-function mutations in the insulin protein. There are clinical differences between the two genetic aetiologies, between the specific mutations, and within patients with identical mutations. Dominant and recessive mutations in the insulin (INS) gene are important causes of neonatal diabetes. Associated phenotypes are variable in terms of age at diabetes onset, birth weight and treatment requirements. Dominant mutations affect the secondary structure of the insulin protein, resulting in beta-cell ER stress and destruction. Recessive mutations result in reduced insulin biosynthesis or loss-of-function mutations of the insulin protein. The studies of these forms of diabetes offer important insights into the structure, biosynthesis and secretion of insulin.
Collapse
Affiliation(s)
- Julie Støy
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom.
| | - Honggang Ye
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Soo-Young Park
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Graeme I Bell
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
5
|
Jang S, Yang M, Ahn SY, Sung SI, Chang YS, Park WS. Neonatal Diabetes Mellitus Due to KCNJ11 (KIR6.2) Mutation Successfully Treated with Sulfonylurea. NEONATAL MEDICINE 2021. [DOI: 10.5385/nm.2021.28.2.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
6
|
Demiral M, Demirbilek H, Çelik K, Okur N, Hussain K, Ozbek MN. Neonatal diabetes due to homozygous INS gene promoter mutations: Highly variable phenotype, remission and early relapse during the first 3 years of life. Pediatr Diabetes 2020; 21:1169-1175. [PMID: 32656923 DOI: 10.1111/pedi.13079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 05/03/2020] [Accepted: 06/30/2020] [Indexed: 02/02/2023] Open
Abstract
Neonatal diabetes mellitus (NDM) is a rare form of monogenic diabetes presenting within the first 6 months of life. INS gene promoter mutations have been shown to cause both remitting/relapsing and permanent NDM. We, herein, present three interesting patients with INS gene promoter mutations. Two cousins with an identical homozygous c.-331C > G mutation presented with NDM. The first cousin had nonremitting diabetes and still requires multidose insulin injections at the current age of 6.1 years. However, the other cousin's diabetes remitted at the age of 9 months, and she is still in remission at the age of 3 years with no medication or dietary intervention required (latest HbA1c was 4.9%). The third patient had NDM also due to a homozygous INS promoter c.-331C>A mutation. Her diabetes remitted at the age of 2 months and relapsed at the age of 2.6 years with severe diabetic ketoacidosis (DKA). Distinct clinical phenotype and relapse with severe DKA in one of the three cases suggest that INS promotor mutations can cause a heterogeneous phenotype and even cases exhibiting remission can relapse unpredictably. Therefore, as the age of relapse is unpredictable, close follow-up and family education on diabetes symptoms are essential for cases with remitting/relapsing diabetes due to INS gene mutations.
Collapse
Affiliation(s)
- Meliha Demiral
- Gazi Yaşargil Research and Training Hospital, Pediatric Endocrinology, Diyarbakır, Turkey
| | - Huseyin Demirbilek
- Hacettepe University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Kıymet Çelik
- Gazi Yaşargil Research and Training Hospital, Neonatology, Diyarbakır, Turkey
| | - Nilufer Okur
- Gazi Yaşargil Research and Training Hospital, Neonatology, Diyarbakır, Turkey
| | - Khalid Hussain
- Department of Pediatrics, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Mehmet Nuri Ozbek
- Gazi Yaşargil Research and Training Hospital, Pediatric Endocrinology, Diyarbakır, Turkey
| |
Collapse
|
7
|
Laurenzano SE, McFall C, Nguyen L, Savla D, Coufal NG, Wright MS, Tokita M, Dimmock D, Kingsmore SF, Newfield RS. Neonatal diabetes mellitus due to a novel variant in the INS gene. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004085. [PMID: 31196892 PMCID: PMC6672029 DOI: 10.1101/mcs.a004085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Neonatal diabetes mellitus (NDM) is a rare condition that presents with diabetes in the first few months of life. The treatment of NDM may differ depending on the genetic etiology, with numerous studies showing the benefit of sulfonylurea therapy in cases caused by mutations in KCNJ11 or ABCC8 Mutations in the insulin gene (INS) have also been identified as causes of NDM; these cases are generally best treated with insulin alone. We report a case of a female infant born small for gestational age (SGA) at late preterm diagnosed with NDM at 7 wk of life who was found by rapid whole-genome sequencing to harbor a novel de novo c.26C>G (p.Pro9Arg) variant in the INS gene. She presented with diabetic ketoacidosis, which responded to insulin therapy. She did not respond to empiric trial of sulfonylurea therapy early in her hospital course, and it was discontinued once a genetic diagnosis was made. Early genetic evaluation in patients presenting with NDM is essential to optimize therapeutic decision-making.
Collapse
Affiliation(s)
- Sarah E. Laurenzano
- Division of Pediatric Endocrinology, Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA
| | - Cory McFall
- Division of Pediatric Intensive Care Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA
| | - Linda Nguyen
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA
| | - Dipal Savla
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA
| | - Nicole G. Coufal
- Division of Pediatric Intensive Care Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA
| | - Meredith S. Wright
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Mari Tokita
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Stephen F. Kingsmore
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Ron S. Newfield
- Division of Pediatric Endocrinology, Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|