1
|
Spurná Z, Čapková P, Punová L, DuchoslavovÁ J, Aleksijevic D, Venháčová P, Srovnal J, Štellmachová J, Curtisová V, Bitnerová V, Petřková J, Kolaříková K, Janíková M, Kratochvílová R, Vrtěl P, Vodička R, Vrtěl R, Zapletalová J. Clinical-genetic analysis of selected genes involved in the development of the human skeleton in 128 Czech patients with suspected congenital skeletal abnormalities. Gene 2024; 892:147881. [PMID: 37806643 DOI: 10.1016/j.gene.2023.147881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Congenital skeletal abnormalities are a heterogeneous group of diseases most commonly associated with small or disproportionate growth, cranial and facial dysmorphisms, delayed bone maturation, etc. Nonetheless, no detailed genotype-phenotype correlation in patients with specific genetic variants is readily available. Ergo, this study focuses on the analysis of patient phenotypes with candidate variants in genes involved in bone growth as detected by molecular genetic analysis. METHODS In this study we used molecular genetic methods to analyse the ACAN, COL2A1, FGFR3, IGFALS, IGF1, IGF1R, GHR, NPR2, STAT5B and SHOX genes in 128 Czech children with suspected congenital skeletal abnormalities. Pathogenic variants and variants of unclear clinical significance were identified and we compared their frequency in this study cohort to the European non-Finnish population. Furthermore, a prediction tool was utilised to determine their possible impact on the final protein. All clinical patient data was obtained during pre-test genetic counselling. RESULTS Pathogenic variants were identified in the FGFR3, GHR, COL2A1 and SHOX genes in a total of six patients. Furthermore, we identified 23 variants with unclear clinical significance and high allelic frequency in this cohort of patients with skeletal abnormalities. Five of them have not yet been reported in the scientific literature. CONCLUSION Congenital skeletal abnormalities may lead to a number of musculoskeletal, neurological, cardiovascular problems. Knowledge of specific pathogenic variants may help us in therapeutic procedures.
Collapse
Affiliation(s)
- Z Spurná
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - P Čapková
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic.
| | - L Punová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - J DuchoslavovÁ
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - D Aleksijevic
- Paediatrics Department, Palacký University and University Hospital, Olomouc, Czech Republic
| | - P Venháčová
- Paediatrics Department, Palacký University and University Hospital, Olomouc, Czech Republic
| | - J Srovnal
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Czech Republic; Cancer Research Czech Republic, Olomouc, Czech Republic
| | - J Štellmachová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - V Curtisová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - V Bitnerová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - J Petřková
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; First Department of Internal Medicine - Cardiology, University Hospital Olomouc, Olomouc, Czech Republic; First Department of Internal Medicine - Cardiology, Palacký University in Olomouc, Olomouc, Czech Republic; Institute of Pathological Physiology, Palacký University in Olomouc, Olomouc, Czech Republic
| | - K Kolaříková
- Department of Neurology, University Hospital Olomouc, Czech Republic; Department of Neurology, Palacky University Olomouc, Czech Republic
| | - M Janíková
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic; Institute of Clinical and Molecular Pathology, Palacký University in Olomouc, Olomouc, Czech Republic
| | - R Kratochvílová
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic
| | - P Vrtěl
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - R Vodička
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - R Vrtěl
- Institute of Medical Genetics, Olomouc University Hospital, Olomouc, Czech Republic; Institute of Medical Genetics, Palacký University in Olomouc, Olomouc, Czech Republic
| | - J Zapletalová
- Paediatrics Department, Palacký University and University Hospital, Olomouc, Czech Republic
| |
Collapse
|
2
|
Chen H, Zhang S, Sun Y, Chen J, Yuan K, Zhang Y, Yang X, Lin X, Chen R. Novel pathogenic NPR2 variants in short stature patients and the therapeutic response to rhGH. Orphanet J Rare Dis 2023; 18:221. [PMID: 37501190 PMCID: PMC10375756 DOI: 10.1186/s13023-023-02757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/04/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE Heterozygous loss-of-function variants in the NPR2 gene cause short stature with nonspecific skeletal abnormalities and account for about 2 ~ 6% of idiopathic short stature. This study aimed to analyze and identify pathogenic variants in the NPR2 gene and explore the therapeutic response to recombinant growth hormone (rhGH). METHODS NPR2 was sequenced in three Chinese Han patients with short stature via exome sequencing. In vitro functional experiments, homology modeling and molecular docking analysis of variants were performed to examine putative protein changes and the pathogenicity of the variants. RESULT Three patients received rhGH therapy for two years, and two NPR2 heterozygous variants were identified in three unrelated cases: c.1579 C > T,p.Leu527Phe in patient 1 and c.2842dupC,p.His948Profs*5 in patient 2. Subsequently, a small gene model was constructed, and transcriptional analysis of the synonymous variant (c.2643G > A) was performed in patient 3, which revealed the deletion of exon 17 and the premature formation of a stop codon (p.His840Gln*). Functional studies showed that both NPR2 variants, His948Profs*5 and His840Gln*, failed to produce cGMP in the homozygous state. Furthermore, the Leu527Phe variant of NPR2 was almost unresponsive to the stimulatory effect of ATP on CNP-dependent guanylyl cyclase activity. This loss of response to ATP has not been previously reported. The average age of patients at the start of treatment was 6.5 ± 1.8 years old, and their height increased by 1.59 ± 0.1 standard deviation score after 2 years of treatment. CONCLUSION In this report, two novel variants in NPR2 gene were described. Our findings broaden the genotypic spectrum of NPR2 variants in individuals with short stature and provid insights into the efficacy of rhGH in these patients.
Collapse
Affiliation(s)
- Hong Chen
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Laboratory Center of Fuzhou Children's Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Suping Zhang
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yunteng Sun
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Jiao Chen
- Department of Pediatrics, The Lin'an People's Hospital, Hangzhou, Zhejiang Province, China
| | - Ke Yuan
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Zhang
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xiaohong Yang
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xiangquan Lin
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Ruimin Chen
- Endocrinology Department, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
3
|
Heterozygous NPR2 Variants in Idiopathic Short Stature. Genes (Basel) 2022; 13:genes13061065. [PMID: 35741827 PMCID: PMC9222219 DOI: 10.3390/genes13061065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023] Open
Abstract
Heterozygous variants in the NPR2 gene, which encodes the B-type natriuretic peptide receptor (NPR-B), a regulator of skeletal growth, were reported in 2-6% cases of idiopathic short stature (ISS). Using next-generation sequencing (NGS), we aimed to assess the frequency of NPR2 variants in our study cohort consisting of 150 children and adolescents with ISS, describe the NPR2 phenotypic spectrum with a growth pattern including birth data, and study the response to growth hormone (GH) treatment. A total of ten heterozygous pathogenic/likely pathogenic NPR2 variants and two heterozygous NPR2 variants of uncertain significance were detected in twelve participants (frequency of causal variants: 10/150, 6.7%). During follow-up, the NPR2 individuals presented with a growth pattern varying from low-normal to significant short stature. A clinically relevant increase in BMI (a mean gain in the BMI SDS of +1.41), a characteristic previously not reported in NPR2 individuals, was observed. In total, 8.8% participants born small for their gestational age (SGA) carried the NPR2 causal variant. The response to GH treatment was variable (SDS height gain ranging from -0.01 to +0.74). According to the results, NPR2 variants present a frequent cause of ISS and familial short stature. Phenotyping variability in growth patterns and variable responses to GH treatment should be considered.
Collapse
|