1
|
Hong J, Kumar S. Circulating biomarkers associated with placental dysfunction and their utility for predicting fetal growth restriction. Clin Sci (Lond) 2023; 137:579-595. [PMID: 37075762 PMCID: PMC10116344 DOI: 10.1042/cs20220300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Fetal growth restriction (FGR) leading to low birth weight (LBW) is a major cause of neonatal morbidity and mortality worldwide. Normal placental development involves a series of highly regulated processes involving a multitude of hormones, transcription factors, and cell lineages. Failure to achieve this leads to placental dysfunction and related placental diseases such as pre-clampsia and FGR. Early recognition of at-risk pregnancies is important because careful maternal and fetal surveillance can potentially prevent adverse maternal and perinatal outcomes by judicious pregnancy surveillance and careful timing of birth. Given the association between a variety of circulating maternal biomarkers, adverse pregnancy, and perinatal outcomes, screening tests based on these biomarkers, incorporating maternal characteristics, fetal biophysical or circulatory variables have been developed. However, their clinical utility has yet to be proven. Of the current biomarkers, placental growth factor and soluble fms-like tyrosine kinase 1 appear to have the most promise for placental dysfunction and predictive utility for FGR.
Collapse
Affiliation(s)
- Jesrine Hong
- Mater Research Institute, University of Queensland, Level 3, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101, Australia
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- School of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| | - Sailesh Kumar
- Mater Research Institute, University of Queensland, Level 3, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101, Australia
- School of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| |
Collapse
|
2
|
Para R, Romero R, Gomez-Lopez N, Tarca AL, Panaitescu B, Done B, Hsu R, Pacora P, Hsu CD. Maternal circulating concentrations of soluble Fas and Elabela in early- and late-onset preeclampsia. J Matern Fetal Neonatal Med 2022; 35:316-329. [PMID: 32008387 PMCID: PMC10544759 DOI: 10.1080/14767058.2020.1716720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The Fas/Fas ligand (FASL) system and Elabela-apelin receptor signaling pathways are implicated in the pathophysiology of preeclampsia. The aim of the current study was to investigate whether a model combining the measurement of sFas and Elabela in the maternal circulation may serve as a clinical biomarker for early- and/or late-onset preeclampsia more effectively than measures of each biomarker individually. METHODS Blood samples were collected from 214 women in the following groups: (1) normal pregnancy sampled <34 weeks of gestation (n = 56); (2) patients who developed early-onset preeclampsia (n = 54); (3) normal pregnancy sampled ≥34 weeks of gestation (n = 52); (4) patients who developed late-onset preeclampsia (n = 52). Maternal circulating soluble Fas and Elabela concentrations were determined using sensitive and validated immunoassays. Two sample t-tests, multivariate logistic regression, and receiver operating characteristic curves were used for analyses. RESULTS (1) Women with early-onset preeclampsia, and those with late-onset preeclampsia with placental lesions of maternal vascular malperfusion, had increased concentrations of sFas compared to their gestational age-matched normal controls; (2) women with late-onset preeclampsia, but not those with early-onset preeclampsia, had increased concentrations of Elabela compared to their gestational age-matched counterparts; and (3) an increase in both Elabela and sFas concentrations was more strongly associated with late-onset preeclampsia than early-onset preeclampsia relative to models including either of the markers alone. CONCLUSIONS A combined model of maternal sFas and Elabela concentrations provides a stronger association with late-onset preeclampsia than either protein alone. This finding demonstrates the possibility to improve the classification of late-onset preeclampsia by combining the results of both molecular biomarkers.
Collapse
Affiliation(s)
- Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Richard Hsu
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
3
|
Wu Y, Liu Y, Ding Y. Predictive Performance of Placental Protein 13 for Screening Preeclampsia in the First Trimester: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:756383. [PMID: 34869456 PMCID: PMC8640131 DOI: 10.3389/fmed.2021.756383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Preeclampsia is a pregnancy-specific syndrome that affects maternal and neonatal mortality. Several serum biomarkers can be used to predict preeclampsia. Among these proteins, placental protein 13 (PP13) has received progressively more interest in recent studies. The decrease in PP13 expression is one of the earliest signs for the development of preeclampsia and has shown its predictive performance for preeclampsia. In this meta-analysis, we collected 17 observational studies with 40,474 pregnant women. The overall sensitivity of PP13 to predict preeclampsia was 0.62 [95% confidence interval (CI) = 0.49–0.74], the specificity was 0.84 (95%CI = 0.81–0.86), and the diagnostic odds ratio was nine (95%CI = 5–15). The area under the curve for summary receiver operating characteristic was 0.84. We then chose the early-onset preeclampsia as a subgroup. The sensitivity of early-onset subgroup was 0.63 (95%CI = 0.58–0.76), the specificity was 0.85 (95%CI = 0.82–0.88), and the diagnostic odds ratio was 10 (95%CI = 6–18). The findings of our meta-analysis indicate that PP13 may be an effective serum biomarker for the predictive screening of preeclampsia. Nonetheless, large prospective cohort studies and randomized controlled trials are expected to uncover its application in clinical practice. The heterogeneity of the original trials may limit the clinical application of PP13. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=188948 The meta-analysis was registered in PROSPERO (CRD42020188948).
Collapse
Affiliation(s)
- Yifan Wu
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiling Ding
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Liu N, Guo YN, Gong LK, Wang BS. Advances in biomarker development and potential application for preeclampsia based on pathogenesis. Eur J Obstet Gynecol Reprod Biol X 2021; 9:100119. [PMID: 33103113 PMCID: PMC7575783 DOI: 10.1016/j.eurox.2020.100119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/27/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific complication that seriously threatens the health and safety of mothers and infants. The etiology of PE has not been fully elucidated, and no effective treatments are currently available. A pregnant woman with PE often has to make a tough choice on either endangering her own health to give a birth or being forced to terminate her pregnancy. It is recommended by the International Federation of Gynecology and Obstetrics that the combination of maternal high-risk factors and biomarkers could form a good strategy for predicting the risk of PE. Such a combination may also enable more effective monitoring and early clinical intervention in high-risk populations to reduce the risk of PE. Therefore, biomarkers validated by extensive clinical research may be formally applied for clinical PE risk prediction. In this review, we summarized data from clinical research on potential biomarkers and classified them according to the current four major hypotheses, namely placental or trophoblast ischemia and hypoxia, vascular endothelial injury, oxidative stress, and immune dysregulation. Additionally, we also discussed the underlying mechanisms by which these potential biomarkers may be involved in the pathogenesis of PE. Finally, we propose that multiple biomarkers reflecting different aspects of the disease pathogenesis should be used in combination to detect the high-risk PE population in support of clinically targeted intervention and prevention of PE. It is expected that tests made of more sensitive and reliable PE biomarkers based on the aforementioned major hypotheses could potentially improve the accuracy of PE prediction in the future.
Collapse
Affiliation(s)
- Nan Liu
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Na Guo
- Department of Obstetrics, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Li-Kun Gong
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing-Shun Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Rd., Shanghai, 200025, China
| |
Collapse
|
5
|
Abstract
Preeclampsia (PE) is associated with long-term morbidity in mothers and lifelong morbidities for their children, ranging from cerebral palsy and cognitive delay in preterm infants, to hypertension, diabetes and obesity in adolescents and young adults. There are several processes that are critical for development of materno-fetal exchange, including establishing adequate perfusion of the placenta by maternal blood, and the formation of the placental villous vascular tree. Recent studies provide persuasive evidence that placenta-derived extracellular vesicles (EVs) represent a significant intercellular communication pathway, and that they may play an important role in placental and endothelial cell (both fetal and maternal) function. These functions are known to be altered in PE. EVs can carry and transport a wide range of bioactive molescules that have potential to be used as biomarkers and therapeutic delivery tools for PE. EV content is often parent cell specific, thus providing an insight or "thumbprint" of the intracellular environment of the originating cell (e.g., human placenta). EV have been identified in plasma under both normal and pathological conditions, including PE. The concentration of EVs and their content in plasma has been reported to increase in association with disease severity and/or progression. Placenta-derived EVs have been identified in maternal plasma during normal pregnancy and PE pregnancies. They contain placenta-specific proteins and miRNAs and, as such, may be differentiated from maternally-derived EVs. The aim of this review, thus, is to describe the potential roles of EVs in preecmpatic pregnancies, focussing on EVs secreted from placental cells. The biogenesis, specificity of placental EVs, and methods used to characterise EVs in the context of PE pregnancies will be also discussed.
Collapse
|
6
|
Molecular Targets of Aspirin and Prevention of Preeclampsia and Their Potential Association with Circulating Extracellular Vesicles during Pregnancy. Int J Mol Sci 2019; 20:ijms20184370. [PMID: 31492014 PMCID: PMC6769718 DOI: 10.3390/ijms20184370] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/26/2022] Open
Abstract
Uncomplicated healthy pregnancy is the outcome of successful fertilization, implantation of embryos, trophoblast development and adequate placentation. Any deviation in these cascades of events may lead to complicated pregnancies such as preeclampsia (PE). The current incidence of PE is 2–8% in all pregnancies worldwide, leading to high maternal as well as perinatal mortality and morbidity rates. A number of randomized controlled clinical trials observed the association between low dose aspirin (LDA) treatment in early gestational age and significant reduction of early onset of PE in high-risk pregnant women. However, a substantial knowledge gap exists in identifying the particular mechanism of action of aspirin on placental function. It is already established that the placental-derived exosomes (PdE) are present in the maternal circulation from 6 weeks of gestation, and exosomes contain bioactive molecules such as proteins, lipids and RNA that are a “fingerprint” of their originating cells. Interestingly, levels of exosomes are higher in PE compared to normal pregnancies, and changes in the level of PdE during the first trimester may be used to classify women at risk for developing PE. The aim of this review is to discuss the mechanisms of action of LDA on placental and maternal physiological systems including the role of PdE in these phenomena. This review article will contribute to the in-depth understanding of LDA-induced PE prevention.
Collapse
|
7
|
Tarca AL, Romero R, Benshalom-Tirosh N, Than NG, Gudicha DW, Done B, Pacora P, Chaiworapongsa T, Panaitescu B, Tirosh D, Gomez-Lopez N, Draghici S, Hassan SS, Erez O. The prediction of early preeclampsia: Results from a longitudinal proteomics study. PLoS One 2019; 14:e0217273. [PMID: 31163045 PMCID: PMC6548389 DOI: 10.1371/journal.pone.0217273] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To identify maternal plasma protein markers for early preeclampsia (delivery <34 weeks of gestation) and to determine whether the prediction performance is affected by disease severity and presence of placental lesions consistent with maternal vascular malperfusion (MVM) among cases. STUDY DESIGN This longitudinal case-control study included 90 patients with a normal pregnancy and 33 patients with early preeclampsia. Two to six maternal plasma samples were collected throughout gestation from each woman. The abundance of 1,125 proteins was measured using high-affinity aptamer-based proteomic assays, and data were modeled using linear mixed-effects models. After data transformation into multiples of the mean values for gestational age, parsimonious linear discriminant analysis risk models were fit for each gestational-age interval (8-16, 16.1-22, 22.1-28, 28.1-32 weeks). Proteomic profiles of early preeclampsia cases were also compared to those of a combined set of controls and late preeclampsia cases (n = 76) reported previously. Prediction performance was estimated via bootstrap. RESULTS We found that 1) multi-protein models at 16.1-22 weeks of gestation predicted early preeclampsia with a sensitivity of 71% at a false-positive rate (FPR) of 10%. High abundance of matrix metalloproteinase-7 and glycoprotein IIbIIIa complex were the most reliable predictors at this gestational age; 2) at 22.1-28 weeks of gestation, lower abundance of placental growth factor (PlGF) and vascular endothelial growth factor A, isoform 121 (VEGF-121), as well as elevated sialic acid binding immunoglobulin-like lectin 6 (siglec-6) and activin-A, were the best predictors of the subsequent development of early preeclampsia (81% sensitivity, FPR = 10%); 3) at 28.1-32 weeks of gestation, the sensitivity of multi-protein models was 85% (FPR = 10%) with the best predictors being activated leukocyte cell adhesion molecule, siglec-6, and VEGF-121; 4) the increase in siglec-6, activin-A, and VEGF-121 at 22.1-28 weeks of gestation differentiated women who subsequently developed early preeclampsia from those who had a normal pregnancy or developed late preeclampsia (sensitivity 77%, FPR = 10%); 5) the sensitivity of risk models was higher for early preeclampsia with placental MVM lesions than for the entire early preeclampsia group (90% versus 71% at 16.1-22 weeks; 87% versus 81% at 22.1-28 weeks; and 90% versus 85% at 28.1-32 weeks, all FPR = 10%); and 6) the sensitivity of prediction models was higher for severe early preeclampsia than for the entire early preeclampsia group (84% versus 71% at 16.1-22 weeks). CONCLUSION We have presented herein a catalogue of proteome changes in maternal plasma proteome that precede the diagnosis of preeclampsia and can distinguish among early and late phenotypes. The sensitivity of maternal plasma protein models for early preeclampsia is higher in women with underlying vascular placental disease and in those with a severe phenotype.
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Neta Benshalom-Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Maternity Clinic, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Dereje W. Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dan Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sorin Draghici
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
8
|
Gaccioli F, Aye ILMH, Sovio U, Charnock-Jones DS, Smith GCS. Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers. Am J Obstet Gynecol 2018; 218:S725-S737. [PMID: 29275822 DOI: 10.1016/j.ajog.2017.12.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/24/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
Fetal growth restriction is a major determinant of perinatal morbidity and mortality. Screening for fetal growth restriction is a key element of prenatal care but it is recognized to be problematic. Screening using clinical risk assessment and targeting ultrasound to high-risk women is the standard of care in the United States and United Kingdom, but the approach is known to have low sensitivity. Systematic reviews of randomized controlled trials do not demonstrate any benefit from universal ultrasound screening for fetal growth restriction in the third trimester, but the evidence base is not strong. Implementation of universal ultrasound screening in low-risk women in France failed to reduce the risk of complications among small-for-gestational-age infants but did appear to cause iatrogenic harm to false positives. One strategy to making progress is to improve screening by developing more sensitive and specific tests with the key goal of differentiating between healthy small fetuses and those that are small through fetal growth restriction. As abnormal placentation is thought to be the major cause of fetal growth restriction, one approach is to combine fetal biometry with an indicator of placental dysfunction. In the past, these indicators were generally ultrasonic measurements, such as Doppler flow velocimetry of the uteroplacental circulation. However, another promising approach is to combine ultrasonic suspicion of small-for-gestational-age infant with a blood test indicating placental dysfunction. Thus far, much of the research on maternal serum biomarkers for fetal growth restriction has involved the secondary analysis of tests performed for other indications, such as fetal aneuploidies. An exemplar of this is pregnancy-associated plasma protein A. This blood test is performed primarily to assess the risk of Down syndrome, but women with low first-trimester levels are now serially scanned in later pregnancy due to associations with placental causes of stillbirth, including fetal growth restriction. The development of "omic" technologies presents a huge opportunity to identify novel biomarkers for fetal growth restriction. The hope is that when such markers are measured alongside ultrasonic fetal biometry, the combination would have strong predictive power for fetal growth restriction and its related complications. However, a series of important methodological considerations in assessing the diagnostic effectiveness of new tests will have to be addressed. The challenge thereafter will be to identify novel disease-modifying interventions, which are the essential partner to an effective screening test to achieve clinically effective population-based screening.
Collapse
Affiliation(s)
- Francesca Gaccioli
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Comprehensive Biomedical Research Center, and Center for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Irving L M H Aye
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Comprehensive Biomedical Research Center, and Center for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Comprehensive Biomedical Research Center, and Center for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Comprehensive Biomedical Research Center, and Center for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Comprehensive Biomedical Research Center, and Center for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
9
|
Abstract
Hypertensive disorders in pregnancy have been the cause of much clinical dilemma, affecting up to 10 % of all pregnancies. The precise blood pressure to achieve in a pregnant woman is usually a battle between minimizing end organ damage to the mother and providing adequate perfusion to the placenta and the fetus. This predicament is becoming more, not less, frequent as maternal ages increase in high resource nations. Biomarkers to predict preeclampsia, a subcategory of hypertension in pregnancy, have always been elusive. The discovery of angiogenic factors relevant to preeclampsia in the last decade, however, has propelled much needed research, both in the basic science and clinical arenas. In this review, we summarize the latest clinical studies and international guidelines on blood pressure goals in pregnancy, and discuss the most promising of biomarkers to predict or diagnose preeclampsia.
Collapse
|
10
|
Berry C, Atta MG. Hypertensive disorders in pregnancy. World J Nephrol 2016; 5:418-28. [PMID: 27648405 PMCID: PMC5011248 DOI: 10.5527/wjn.v5.i5.418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Renal injury or failure may occur in the context of pregnancy requiring special considerations with regard to fetal and maternal health. The condition of pregnancy itself may be a major factor in such injuries. In addition, for many young women previously known to be healthy, pregnancy may be the first presentation for routine urine and blood testing which may yield previously subclinical renal disease. As such, pregnancy may add complexity to considerations in the management of renal disease presenting coincidentally requiring knowledge of the physiologic changes and potential renal disorders that may be encountered during pregnancy.
Collapse
|