1
|
Yu L, Liu M, Xu S, Wang Z, Liu T, Zhou J, Zhang D, Dong X, Pan B, Wang B, Liu S, Guo W. Follicular fluid steroid and gonadotropic hormone levels and mitochondrial function from exosomes predict embryonic development. Front Endocrinol (Lausanne) 2022; 13:1025523. [PMID: 36440207 PMCID: PMC9682035 DOI: 10.3389/fendo.2022.1025523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Human follicular fluid (FF) is a complex biological fluid that contributes to the micro-environment of oocyte development. The aim of this study was to evaluate the role of steroid and gonadotropic hormones levels and mitochondrial function in embryo development during in vitro fertilization cycles. METHODS This was a cohort study of 138 women receiving IVF/ICSI, including 136 FF samples from 109 infertile women. FF steroid and gonadotropic hormones levels were tested by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassays. The mRNA expression levels of mitochondrial electron transport chain (ETC) complex genes from FF exosomes were detected by qPCR. RESULTS Analysis of these individual FF concentrations revealed that LH and FSH concentrations were higher in follicles in which the oocyte developed into a top quality (TQ) blastocyst (LH: 9.44 ± 2.32mIU/ml, FSH: 9.32 ± 1.01mIU/ml) than those in which there was a failure of fertilization (LH: 5.30 ± 0.84mIU/ml, FSH: 6.91 ± 0.62mIU/ml). In contrast, follicular cortisone concentrations were lower for oocytes that resulted in a TQ blastocyst (12.20 ± 0.82mIU/ml). The receiver operating characteristic analysis showed that FF LH and FSH levels predicted TQ blastocyst with excellent AUC value of 0.711 and 0.747. Mitochondrial ETC complex I and III mRNA levels were increased in the FF exosomes of TQ blastocyst. Correlation analysis showed that mRNA levels of ETC complex I was positively correlated with LH and FSH levels in FF. CONCLUSION The levels of FF steroid and gonadotropic hormones from single follicle can predetermine subsequent embryo development to some extent. Furthermore, impaired exosome mitochondrial dysfunction is a potiential event that causes hormone change in embryo development.
Collapse
Affiliation(s)
- Li Yu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiji Xu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenxin Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaye Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Doudou Zhang
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Wei Guo, ; Suying Liu, ; Beili Wang,
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Wei Guo, ; Suying Liu, ; Beili Wang,
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Wei Guo, ; Suying Liu, ; Beili Wang,
| |
Collapse
|