1
|
Capelli I, Lerario S, Ciurli F, Berti GM, Aiello V, Provenzano M, La Manna G. Investigational agents for autosomal dominant polycystic kidney disease: preclinical and early phase study insights. Expert Opin Investig Drugs 2024; 33:469-484. [PMID: 38618918 DOI: 10.1080/13543784.2024.2342327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited kidney condition caused by a single-gene mutation. It leads patients to kidney failure in more than 50% of cases by the age of 60, and, given the dominant inheritance, this disease is present in the family history in more than 90% of cases. AREAS COVERED This review aims to analyze the set of preclinical and early-phase studies to provide a general view of the current progress on ADPKD therapeutic options. Articles from PubMed and the current status of the trials listed in clinicaltrials.gov were examined for the review. EXPERT OPINION Many potential therapeutic targets are currently under study for the treatment of ADPKD. A few drugs have reached the clinical phase, while many are currently still in the preclinical phase. Organoids could be a novel approach to the study of drugs in this phase. Other than pharmacological options, very important developing approaches are represented by gene therapy and the use of MiRNA inhibitors.
Collapse
Affiliation(s)
- Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sarah Lerario
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesca Ciurli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gian Marco Berti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Valeria Aiello
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Michele Provenzano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
3
|
Bakaj I, Pocai A. Metabolism-based approaches for autosomal dominant polycystic kidney disease. Front Mol Biosci 2023; 10:1126055. [PMID: 36876046 PMCID: PMC9980902 DOI: 10.3389/fmolb.2023.1126055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) leads to end stage kidney disease (ESKD) through the development and expansion of multiple cysts throughout the kidney parenchyma. An increase in cyclic adenosine monophosphate (cAMP) plays an important role in generating and maintaining fluid-filled cysts because cAMP activates protein kinase A (PKA) and stimulates epithelial chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR). A vasopressin V2 receptor antagonist, Tolvaptan, was recently approved for the treatment of ADPKD patients at high risk of progression. However additional treatments are urgently needed due to the poor tolerability, the unfavorable safety profile, and the high cost of Tolvaptan. In ADPKD kidneys, alterations of multiple metabolic pathways termed metabolic reprogramming has been consistently reported to support the growth of rapidly proliferating cystic cells. Published data suggest that upregulated mTOR and c-Myc repress oxidative metabolism while enhancing glycolytic flux and lactic acid production. mTOR and c-Myc are activated by PKA/MEK/ERK signaling so it is possible that cAMPK/PKA signaling will be upstream regulators of metabolic reprogramming. Novel therapeutics opportunities targeting metabolic reprogramming may avoid or minimize the side effects that are dose limiting in the clinic and improve on the efficacy observed in human ADPKD with Tolvaptan.
Collapse
Affiliation(s)
- Ivona Bakaj
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, PA, United States
| | - Alessandro Pocai
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, PA, United States
| |
Collapse
|
4
|
The cellular pathways and potential therapeutics of Polycystic Kidney Disease. Biochem Soc Trans 2021; 49:1171-1188. [PMID: 34156429 DOI: 10.1042/bst20200757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Polycystic Kidney Disease (PKD) refers to a group of disorders, driven by the formation of cysts in renal tubular cells and is currently one of the leading causes of end-stage renal disease. The range of symptoms observed in PKD is due to mutations in cilia-localising genes, resulting in changes in cellular signalling. As such, compounds that are currently in preclinical and clinical trials target some of these signalling pathways that are dysregulated in PKD. In this review, we highlight these pathways including cAMP, EGF and AMPK signalling and drugs that target them and may show promise in lessening the disease burden of PKD patients. At present, tolvaptan is the only approved therapy for ADPKD, however, it carries several adverse side effects whilst comparatively, no pharmacological drug is approved for ARPKD treatment. Aside from this, drugs that have been the subject of multiple clinical trials such as metformin, which targets AMPK signalling and somatostatins, which target cAMP signalling have shown great promise in reducing cyst formation and cellular proliferation. This review also discusses other potential and novel targets that can be used for future interventions, such as β-catenin and TAZ, where research has shown that a reduction in the overexpression of these signalling components results in amelioration of disease phenotype. Thus, it becomes apparent that well-designed preclinical investigations and future clinical trials into these pathways and other potential signalling targets are crucial in bettering disease prognosis for PKD patients and could lead to personalised therapy approaches.
Collapse
|
5
|
Capuano I, Buonanno P, Riccio E, Amicone M, Pisani A. Therapeutic advances in ADPKD: the future awaits. J Nephrol 2021; 35:397-415. [PMID: 34009558 DOI: 10.1007/s40620-021-01062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder included in ciliopathies, representing the fourth cause of end stage renal disease (ESRD), with an estimated prevalence between 1:1000 and 1:2500. It is mainly caused by mutations in the PKD1 and PKD2 genes encoding for polycystin 1 (PC1) and polycystin 2 (PC2), which regulate differentiation, proliferation, survival, apoptosis, and autophagy. The advances in the knowledge of multiple molecular pathways involved in the pathophysiology of ADPKD led to the development of several treatments which are currently under investigation. Recently, the widespread approval of tolvaptan and, in Italy, of long-acting release octreotide (octreotide-LAR), represents but the beginning of the new therapeutic management of ADPKD patients. Encouraging results are expected from ongoing randomized controlled trials (RCTs), which are investigating not only drugs acting on the calcium/cyclic adenosin monoposphate (cAMP) pathway, the most studied target so far, but also molecules targeting specific pathophysiological pathways (e.g. epidermal growth factor (EGF) receptor, AMP-activated protein kinase (AMPK) and KEAP1-Nrf2) and sphingolipids. Moreover, studies on animal models and cultured cells have also provided further promising therapeutic strategies based on the role of intracellular calcium, cell cycle regulation, MAPK pathway, epigenetic DNA, interstitial inflammation, and cell therapy. Thus, in a near future, tailored therapy could be the key to changing the natural history of ADPKD thanks to the vigorous efforts that are being made to implement clinical and preclinical studies in this field. Our review aimed to summarize the spectrum of drugs that are available in the clinical practice and the most promising molecules undergoing clinical, animal, and cultured cell studies.
Collapse
Affiliation(s)
- Ivana Capuano
- Chair of Nephrology "Federico II", Department of Public Health, University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy.
| | - Pasquale Buonanno
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, Naples, Italy
| | - Eleonora Riccio
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Maria Amicone
- Chair of Nephrology "Federico II", Department of Public Health, University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Antonio Pisani
- Chair of Nephrology "Federico II", Department of Public Health, University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
6
|
Mao Z, Valluru MK, Ong ACM. Drug repurposing in autosomal dominant polycystic kidney disease: back to the future with pioglitazone. Clin Kidney J 2021; 14:1715-1718. [PMID: 34221378 PMCID: PMC8243263 DOI: 10.1093/ckj/sfab062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of end-stage kidney failure. At present, only one drug, tolvaptan, has been approved for use to slow disease progression, but its use is limited by reduced tolerability and idiosyncratic liver toxicity. Thiazolidinediones were first developed as insulin-sensitizers but also regulate gene transcription in multiple tissues, leading to systemic effects on metabolism, inflammation and vascular reactivity. In this issue, Blazer-Yost et al. report the results of a single-centre Phase 1b double-blind placebo-controlled crossover study of the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist pioglitazone in 18 ADPKD patients. Encouragingly, there were no major safety signals, although evidence of efficacy could not be demonstrated due to the small sample size. We review the preclinical evidence for the use of PPAR-γ agonists in ADPKD and speculate on the likely beneficial and adverse clinical effects of this interesting class of compounds in a future trial.
Collapse
Affiliation(s)
- Zhiguo Mao
- Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Manoj K Valluru
- Department of Infection, Immunity and Cardiovascular Disease, Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Albert C M Ong
- Department of Infection, Immunity and Cardiovascular Disease, Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
7
|
Blazer-Yost BL, Bacallao RL, Erickson BJ, LaPradd ML, Edwards ME, Sheth N, Swinney K, Ponsler-Sipes KM, Moorthi RN, Perkins SM, Torres VE, Moe SM. A randomized phase 1b cross-over study of the safety of low-dose pioglitazone for treatment of autosomal dominant polycystic kidney disease. Clin Kidney J 2021; 14:1738-1746. [PMID: 34221381 PMCID: PMC8243264 DOI: 10.1093/ckj/sfaa232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 01/10/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenetic disorders in humans and is characterized by numerous fluid-filled cysts that grow slowly, resulting in end-stage renal disease in the majority of patients. Preclinical studies have indicated that treatment with low-dose thiazolidinediones, such as pioglitazone, decrease cyst growth in rodent models of PKD. Methods This Phase 1b cross-over study compared the safety of treatment with a low dose (15 mg) of the peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone or placebo in PKD patients, with each treatment given for 1 year. The study monitored known side effects of PPAR-γ agonist treatment, including fluid retention and edema. Liver enzymes and risk of hypoglycemia were assessed throughout the study. As a secondary objective, the efficacy of low-dose pioglitazone was followed using a primary assessment of total kidney volume (TKV), blood pressure (BP) and kidney function. Results Eighteen patients were randomized and 15 completed both arms. Compared with placebo, allocation to pioglitazone resulted in a significant decrease in total body water as assessed by bioimpedance analysis {mean difference 0.16 Ω [95% confidence interval (CI) 0.24–2.96], P = 0.024} and no differences in episodes of heart failure, clinical edema or change in echocardiography. Allocation to pioglitazone led to no difference in the percent change in TKV of −3.5% (95% CI −8.4–1.4, P = 0.14), diastolic BP and microalbumin:creatinine ratio. Conclusions In this small pilot trial in people with ADPKD but without diabetes, pioglitazone 15 mg was found to be as safe as placebo. Larger and longer-term randomized trials powered to assess effects on TKV are needed.
Collapse
Affiliation(s)
- Bonnie L Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Robert L Bacallao
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veteran Administration Health Center, Indianapolis, IN, USA
| | | | - Michelle L LaPradd
- Department of Biostatistics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Marie E Edwards
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Nehal Sheth
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kim Swinney
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristen M Ponsler-Sipes
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ranjani N Moorthi
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan M Perkins
- Department of Biostatistics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Vicente E Torres
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Sharon M Moe
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veteran Administration Health Center, Indianapolis, IN, USA
| |
Collapse
|
8
|
Kanhai AA, Bange H, Verburg L, Dijkstra KL, Price LS, Peters DJM, Leonhard WN. Renal cyst growth is attenuated by a combination treatment of tolvaptan and pioglitazone, while pioglitazone treatment alone is not effective. Sci Rep 2020; 10:1672. [PMID: 32015419 PMCID: PMC6997373 DOI: 10.1038/s41598-020-58382-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common monogenic disorders, characterized by the progressive formation of fluid-filled cysts. Tolvaptan is an approved drug for ADPKD patients, but is also associated with multiple side effects. The peroxisome proliferator-activator receptor gamma (PPARγ) agonist pioglitazone slows disease progression in the PCK rat model for PKD. Here, we tested whether a combination treatment of relevant doses of tolvaptan and pioglitazone leads to improved efficacy in an adult-onset PKD mouse model. Tolvaptan indeed slowed PKD progression, but the combination treatment was not more effective than tolvaptan alone. In addition, although pioglitazone raised plasma levels of its surrogate drug marker adiponectin, the drug unexpectedly failed to slow PKD progression. The pioglitazone target PPARγ was expressed at surprisingly low levels in mouse, rat and human kidneys. Other pioglitazone targets were more abundantly expressed, but this pattern was comparable across various species. The data suggest that several potential pharmacokinetic and pharmacodynamic (PK/PD) differences between different species may underlie whether or not pioglitazone is able to slow PKD progression. The ongoing phase II clinical trial with low-dose pioglitazone treatment (NCT02697617) will show whether pioglitazone is a suitable drug candidate for ADPKD treatment.
Collapse
Affiliation(s)
- Anish A Kanhai
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Lotte Verburg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kyra L Dijkstra
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Malas TB, Leonhard WN, Bange H, Granchi Z, Hettne KM, Van Westen GJP, Price LS, 't Hoen PAC, Peters DJM. Prioritization of novel ADPKD drug candidates from disease-stage specific gene expression profiles. EBioMedicine 2019; 51:102585. [PMID: 31879244 PMCID: PMC7000333 DOI: 10.1016/j.ebiom.2019.11.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common causes of end-stage renal failure, caused by mutations in PKD1 or PKD2 genes. Tolvaptan, the only drug approved for ADPKD treatment, results in serious side-effects, warranting the need for novel drugs. Methods In this study, we applied RNA-sequencing of Pkd1cko mice at different disease stages, and with/without drug treatment to identify genes involved in ADPKD progression that were further used to identify novel drug candidates for ADPKD. We followed an integrative computational approach using a combination of gene expression profiling, bioinformatics and cheminformatics data. Findings We identified 1162 genes that had a normalized expression after treating the mice with drugs proven effective in preclinical models. Intersecting these genes with target affinity profiles for clinically-approved drugs in ChEMBL, resulted in the identification of 116 drugs targeting 29 proteins, of which several are previously linked to Polycystic Kidney Disease such as Rosiglitazone. Further testing the efficacy of six candidate drugs for inhibition of cyst swelling using a human 3D-cyst assay, revealed that three of the six had cyst-growth reducing effects with limited toxicity. Interpretation Our data further establishes drug repurposing as a robust drug discovery method, with three promising drug candidates identified for ADPKD treatment (Meclofenamic Acid, Gamolenic Acid and Birinapant). Our strategy that combines multiple-omics data, can be extended for ADPKD and other diseases in the future. Funding European Union's Seventh Framework Program, Dutch Technology Foundation Stichting Technische Wetenschappen and the Dutch Kidney Foundation.
Collapse
Affiliation(s)
- Tareq B Malas
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Zoraide Granchi
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, the Netherlands
| | - Kristina M Hettne
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerard J P Van Westen
- Drug Discovery and Safety, Leiden Academic Center for Drug Research, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | | | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
10
|
Testa F, Magistroni R. ADPKD current management and ongoing trials. J Nephrol 2019; 33:223-237. [PMID: 31853789 DOI: 10.1007/s40620-019-00679-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022]
Abstract
Among the diseases that require renal replacement therapy (RRT), ADPKD is the fourth for incidence and prevalence. In Italy, there are at least 32,000 patients affected by ADPKD, of which about 2900 in dialysis. The pure costs of dialysis treatment for the Italian National Health Service can be conservatively estimated at 87 million euros per year. Even a modest slowdown in the evolution of the disease would obtain an important result in terms of reduction of health expenditure. In recent years, many new or repurposed drugs have been evaluated in clinical trials for ADPKD. In this review we will mainly focus on advanced stage clinical trials (phase 2 and 3). We have grouped these studies according to the molecular pathway addressed by the experimental drug or the therapeutic strategy. More than 10 years after the start of the first Phase III clinical trials in ADPKD, the first drug active in slowing disease progression is finally available. It cannot be considered a goal but only the beginning of a journey because of the significant side effects and the high cost of Tolvaptan. An exuberant basic research activity in the field, together with the large number of ongoing protocols, keep the nephrologists and their patients positive with regard to the discovery of new and better therapies in a not-too-distant future.
Collapse
Affiliation(s)
- Francesca Testa
- UOC Divisione di Nefrologia Dialisi e Trapianto, AOU Policlinico di Modena, Modena, Italy
| | - Riccardo Magistroni
- UOC Divisione di Nefrologia Dialisi e Trapianto, AOU Policlinico di Modena, Modena, Italy. .,Dipartimento Chirurgico Medico Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, Modena, Italy.
| |
Collapse
|
11
|
Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol 2019; 14:678-687. [PMID: 30120380 DOI: 10.1038/s41581-018-0051-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common, potentially lethal, monogenic diseases and is caused predominantly by mutations in polycystic kidney disease 1 (PKD1) and PKD2, which encode polycystin 1 (PC1) and PC2, respectively. Over the decades-long course of the disease, patients develop large fluid-filled renal cysts that impair kidney function, leading to end-stage renal disease in ~50% of patients. Despite the identification of numerous dysregulated pathways in ADPKD, the molecular mechanisms underlying the renal dysfunction from mutations in PKD genes and the physiological functions of the polycystin proteins are still unclear. Alterations in cell metabolism have emerged in the past decade as a hallmark of ADPKD. ADPKD cells shift their mode of energy production from oxidative phosphorylation to alternative pathways, such as glycolysis. In addition, the polycystins seem to play regulatory roles in modulating mechanisms and machinery related to energy production and utilization, including AMPK, PPARα, PGC1α, calcium signalling at mitochondria-associated membranes, mTORC1, cAMP and CFTR-mediated ion transport as well as the expression of crucial components of the mitochondrial energy production apparatus. In this Review, we explore these metabolic changes and discuss in detail the relationship between energy metabolism and ADPKD pathogenesis and identify potential therapeutic targets.
Collapse
|
12
|
Wang X, Constans MM, Chebib FT, Torres VE, Pellegrini L. Effect of a Vasopressin V2 Receptor Antagonist on Polycystic Kidney Disease Development in a Rat Model. Am J Nephrol 2019; 49:487-493. [PMID: 31117065 DOI: 10.1159/000500667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/24/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Vasopressin V2 receptor inhibition is a clinically validated mechanism of action in the treatment of autosomal dominant polycystic kidney disease (ADPKD). In this study, the effect of lixivaptan, a potent, selective vasopressin V2 antagonist, was evaluated in PCK rats, a validated animal model of PKD. METHODS Four-week old PCK rats were fed rodent chow with 0.5% lixivaptan (low dose) or 1% lixivaptan (high dose), or chow only (control) for 8 weeks. Urine output was measured at weeks 7 and 10 of age. Animals were killed at 12 weeks of age; kidneys and livers were collected, weighted, and analyzed for cyclic adenosine 3',5'-monophosphate (cAMP) levels and cystic burden and fibrosis; serum creatinine and sodium were measured. RESULTS Consistent with the development of a polycystic kidney phenotype, control PCK rats showed enlarged kidneys, extensive cyst formation, and early signs of serum creatinine elevation at 12 weeks of age. Compared to controls, PCK rats treated with low-dose lixivaptan showed a 26% reduction in % kidney weight/body weight (p < 0.01); a 54% reduction in kidney cystic score (p < 0.001), a histomorphometric measure of cystic burden; a 23% reduction in kidney cAMP levels (p < 0.05), a biochemical marker of disease; and a 13% reduction in plasma creatinine (p < 0.001), indicating preserved renal function. These reductions were associated with 3-fold increases in 24-h urine output, demonstrating the potent aquaretic effect of lixivaptan. The fact that the high dose was less efficacious than the low dose is discussed. CONCLUSIONS These results provide the first evidence of the potential utility of lixivaptan for the treatment of ADPKD.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Nephrology, Mayo Clinic, Rochester, Minnesota, USA
| | - Megan M Constans
- Department of Nephrology, Mayo Clinic, Rochester, Minnesota, USA
| | - Fouad T Chebib
- Department of Nephrology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vicente E Torres
- Department of Nephrology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
13
|
Weimbs T, Shillingford JM, Torres J, Kruger SL, Bourgeois BC. Emerging targeted strategies for the treatment of autosomal dominant polycystic kidney disease. Clin Kidney J 2018; 11:i27-i38. [PMID: 30581563 PMCID: PMC6295603 DOI: 10.1093/ckj/sfy089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disease that leads to renal failure in the majority of patients. The very first pharmacological treatment, tolvaptan, received Food and Drug Administration approval in 2018 after previous approval in Europe and other countries. However, tolvaptan is moderately effective and may negatively impact a patient's quality of life due to potentially significant side effects. Additional and improved therapies are still urgently needed, and several clinical trials are underway, which are discussed in the companion paper Müller and Benzing (Management of autosomal-dominant polycystic kidney disease-state-of-the-art) Clin Kidney J 2018; 11: i2-i13. Here, we discuss new therapeutic avenues that are currently being investigated at the preclinical stage. We focus on mammalian target of rapamycin and dual kinase inhibitors, compounds that target inflammation and histone deacetylases, RNA-targeted therapeutic strategies, glucosylceramide synthase inhibitors, compounds that affect the metabolism of renal cysts and dietary restriction. We discuss tissue targeting to renal cysts of small molecules via the folate receptor, and of monoclonal antibodies via the polymeric immunoglobulin receptor. A general problem with potential pharmacological approaches is that the many molecular targets that have been implicated in ADPKD are all widely expressed and carry out important functions in many organs and tissues. Because ADPKD is a slowly progressing, chronic disease, it is likely that any therapy will have to continue over years and decades. Therefore, systemically distributed drugs are likely to lead to potentially prohibitive extra-renal side effects during extended treatment. Tissue targeting to renal cysts of such drugs is one potential way around this problem. The use of dietary, instead of pharmacological, interventions is another.
Collapse
Affiliation(s)
- Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Jonathan M Shillingford
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Torres
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Samantha L Kruger
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Bryan C Bourgeois
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
14
|
Nantavishit J, Chatsudthipong V, Soodvilai S. Lansoprazole reduces renal cyst in polycystic kidney disease via inhibition of cell proliferation and fluid secretion. Biochem Pharmacol 2018; 154:175-182. [DOI: 10.1016/j.bcp.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
|
15
|
Molinari E, Sayer JA. Emerging treatments and personalised medicine for ciliopathies associated with cystic kidney disease. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1372282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elisa Molinari
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John A. Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|