1
|
Zhang J, Gao X, Yu L. Roles of Histone Deacetylases in Acute Myeloid Leukemia With Fusion Proteins. Front Oncol 2021; 11:741746. [PMID: 34540702 PMCID: PMC8440836 DOI: 10.3389/fonc.2021.741746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate orchestration of gene expression is critical for the process of normal hematopoiesis, and dysregulation is closely associated with leukemogenesis. Epigenetic aberration is one of the major causes contributing to acute myeloid leukemia (AML), where chromosomal rearrangements are frequently found. Increasing evidences have shown the pivotal roles of histone deacetylases (HDACs) in chromatin remodeling, which are involved in stemness maintenance, cell fate determination, proliferation and differentiation, via mastering the transcriptional switch of key genes. In abnormal, these functions can be bloomed to elicit carcinogenesis. Presently, HDAC family members are appealing targets for drug exploration, many of which have been deployed to the AML treatment. As the majority of AML events are associated with chromosomal translocation resulting in oncogenic fusion proteins, it is valuable to comprehensively understand the mutual interactions between HDACs and oncogenic proteins. Therefore, we reviewed the process of leukemogenesis and roles of HDAC members acting in this progress, providing an insight for the target anchoring, investigation of hyperacetylated-agents, and how the current knowledge could be applied in AML treatment.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Choi Y, Lee JH, Lee JH, Park HS, Choi EJ, Jo JC, Lee YJ, Lee YS, Kang YA, Lee KH. Monosomal karyotype affecting outcomes of allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia in first complete remission. Eur J Haematol 2020; 105:262-273. [PMID: 32353911 DOI: 10.1111/ejh.13434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We evaluated the prognostic impact of MK on postremission outcomes of AML patients receiving allogeneic hematopoietic stem cell transplantation (HSCT) in the first complete remission (CR1). METHODS We retrospectively analyzed 465 adult patients with AML who had received HSCT in the first CR between 2000 and 2016. RESULTS In MK + AML, the median leukocyte count was significantly lower (P < .001) and no NPM1 mutation was found (P = .042). Multivariate analysis revealed that MK was the most powerful prognostic factors for OS (hazard ratio [HR], 2.6; P = .001), EFS (HR, 3.8; P < .001), and cumulative incidence of relapse (HR, 6.1; P < .001), compared to any other poor risk factors such as complex karyotype, FLT3-ITD mutations, old age, and higher leukocyte count. The adverse prognostic impact of MK tended to be more prominent in the younger age group (<40 years) (HR, 6.3, P < .001) than in the older age group (≥40 years) (HR, 3.4, P < .001). CONCLUSION Novel treatment modalities for MK + AML need to be investigated to reduce the risk of relapse after HSCT.
Collapse
Affiliation(s)
- Yunsuk Choi
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Hee Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Seung Park
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Cheol Jo
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Yoo Jin Lee
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Young-Shin Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Ah Kang
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Ohanian M, Telouk P, Kornblau S, Albarede F, Ruvolo P, Tidwell RSS, Plesa A, Kanagal-Shamanna R, Matera EL, Cortes J, Carson A, Dumontet C. A heavy metal baseline score predicts outcome in acute myeloid leukemia. Am J Hematol 2020; 95:422-434. [PMID: 31944361 DOI: 10.1002/ajh.25731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Despite abundant epidemiological data linking metals to leukemia and other cancers, baseline values of toxic and essential metals in patients with leukemia and the clinical impact of these metals remain unknown. Thus, we sought to quantify metal values in untreated patients with acute myeloid leukemia (AML) and controls and determine the impact of metal values on AML patients' survival. Serum samples from patients with untreated AML and controls at Hospices Civils de Lyon were analyzed and compared for trace metals and copper isotopic abundance ratios with inductively coupled plasma mass spectrometry. Survival analysis was performed as a function of metal values, and a multi-metal score was developed for patients with AML. Serum samples were collected from 67 patients with untreated AML and 94 controls. Most patients had intermediate-risk cytogenetics (63.1%) without FLT3 internal tandem duplication mutations (75.6%) or NPM1 mutations (68.1%). Most metal values differed significantly between AML and control groups. Patients with lower magnesium and higher cadmium values had the worst survival rates, with only 36% surviving at 6 months (P = .001). The adverse prognostic effect of this combination was maintained on multivariate analysis. Based on this, we developed a novel metal score, which accounts for multiple relative abnormalities in the values of five toxic and five essential metals. Patients with a higher metal score had significantly worse survival, which was maintained on multivariate analysis (P = .03). This baseline metal scoring system was also prognostic when we applied it to a separate population of front-line AML patients.
Collapse
Affiliation(s)
- Maro Ohanian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philippe Telouk
- Department of Géosciences, École Normal Supérieure de Lyon, Lyon, France
| | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francis Albarede
- Department of Géosciences, École Normal Supérieure de Lyon, Lyon, France
| | - Peter Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca S S Tidwell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adriana Plesa
- CRCL, INSERM 1052/CNRS 5286, Hospices Civils de Lyon, Lyon, France
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eva-Laure Matera
- CRCL, INSERM 1052/CNRS 5286, Hospices Civils de Lyon, Lyon, France
| | | | - Arch Carson
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas School of Public Health, Houston, Texas
| | - Charles Dumontet
- CRCL, INSERM 1052/CNRS 5286, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
4
|
Schnake N, Hinojosa M, Gutiérrez S. Identification of a novel long non-coding RNA within RUNX1 intron 5. Hum Genomics 2019; 13:33. [PMID: 31366376 PMCID: PMC6670153 DOI: 10.1186/s40246-019-0219-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background RUNX1 gene, a master regulator of the hematopoietic process, participates in pathological conditions as a partner for several genes in chromosomal translocations. One of the most frequent chromosomal translocations found in acute myeloid leukemia patients is the t(8;21), in which RUNX1 and ETO genes recombine. In RUNX1 gene, the DNA double-strand breaks that originate the t(8;21) are generated in the intron 5, specifically within three regions designated as BCR1, BCR2, and BCR3. To date, what determines that these regions are more susceptible to DNA double-strand breaks is not completely clear. In this report, we characterized RUNX1 intron 5, by analyzing DNase-seq and ChIP-seq data, available in the ENCODE Project server, to evaluate DNaseI hypersensitivity and the presence of the epigenetic mark H3K4me3 in 124 and 51 cell types, respectively. Results Our results show that intron 5 exhibits an epigenetic mark distribution similar to known promoter regions. Moreover, using the online tool YAPP and available CAGE data from the ENCODE Project server, we identified several putative transcription start sites within intron 5 in regions BCR2 and BCR3. Finally, available EST data was analyzed, identifying a novel uncharacterized long non-coding RNA, which is expressed in hematopoietic cell lines as shown by RT-PCR. Our data suggests that the core promoter of the novel long non-coding RNA locates within the region BCR3. Conclusion We identified a novel long non-coding RNA within RUNX1 intron 5, transcribed from a promoter located in the region BCR3, one of the chromosomal breakpoints of RUNX1 gene. Electronic supplementary material The online version of this article (10.1186/s40246-019-0219-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolás Schnake
- Laboratory of Epigenetics [EpiGene], Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Marcela Hinojosa
- Laboratory of Epigenetics [EpiGene], Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Soraya Gutiérrez
- Laboratory of Epigenetics [EpiGene], Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile.
| |
Collapse
|
5
|
Ohanian M, Rozovski U, Kanagal-Shamanna R, Abruzzo LV, Loghavi S, Kadia T, Futreal A, Bhalla K, Zuo Z, Huh YO, Post SM, Ruvolo P, Garcia-Manero G, Andreeff M, Kornblau S, Borthakur G, Hu P, Medeiros LJ, Takahashi K, Hornbaker MJ, Zhang J, Nogueras-González GM, Huang X, Verstovsek S, Estrov Z, Pierce S, Ravandi F, Kantarjian HM, Bueso-Ramos CE, Cortes JE. MYC protein expression is an important prognostic factor in acute myeloid leukemia. Leuk Lymphoma 2019; 60:37-48. [PMID: 29741984 PMCID: PMC6226369 DOI: 10.1080/10428194.2018.1464158] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As new drugs targeting MYC show clinical activity in acute myeloid leukemia (AML), understanding MYC expression in AML is of critical importance. We assessed MYC protein expression by immunohistochemistry in bone marrow of patients with untreated AML (n = 265). Overall, 90% of patients demonstrated MYC overexpression and MYC immunopositivity ≤6% was associated with superior complete remission (CR) duration of 23 months versus 12 months for MYC immunopositivity >6% (p = .028). Among 241 patients at higher risk for relapse, including those ≥55 years of age and patients with intermediate- and high-risk AML, MYC immunopositivity ≤6% conferred significantly superior median overall survival (OS) (24 versus 13 months; p = .042), event-free survival (EFS) (14 versus 6 months; p = .048), and relapse-free survival (RFS) (25 versus 12 months; p = .024). The prognostic impact of MYC-immunopositivity was retained on multivariate analysis of OS, EFS, and RFS. We conclude that MYC immunopositivity is an important prognostic factor in patients with untreated AML, particularly those at higher risk for relapse.
Collapse
Affiliation(s)
- Maro Ohanian
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Uri Rozovski
- Department of Hematology, Davidoff Cancer Center at Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Israel
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas at MD Anderson Cancer Center Houston, Texas
| | - Lynne V. Abruzzo
- Department of Pathology, Ohio State University, Columbus, OH 43202
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas at MD Anderson Cancer Center Houston, Texas
| | - Tapan Kadia
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas at MD Anderson Cancer Center, Houston, TX
| | - Kapil Bhalla
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas at MD Anderson Cancer Center Houston, Texas
| | - Yang O. Huh
- Department of Hematopathology, The University of Texas at MD Anderson Cancer Center Houston, Texas
| | - Sean M. Post
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Peter Ruvolo
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Steven Kornblau
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Peter Hu
- School of Health Professions, The University of Texas at MD Anderson Cancer Center, Houston, TX
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas at MD Anderson Cancer Center Houston, Texas
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Marisa J. Hornbaker
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas at MD Anderson Cancer Center, Houston, TX
| | | | - Xuelin Huang
- Department of Biostatistics, The University of Texas at MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Zeev Estrov
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| | - Carlos E. Bueso-Ramos
- Department of Hematopathology, The University of Texas at MD Anderson Cancer Center Houston, Texas
| | - Jorge E. Cortes
- Department of Leukemia, The University of Texas at MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Wang J, Wang Z, Wei W, Zhang W, Zhang T, Cheng H, Fei X, Yin Y, Gu J, Yuan L. Cord Haploidentical Non-In Vitro T Cell Depletion Allogeneic Hematopoietic Stem Cell Transplantation Reduces Relapse of Refractory Acute Leukemia. Biol Blood Marrow Transplant 2019; 25:121-128. [DOI: 10.1016/j.bbmt.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
|