1
|
Proshkina GM, Shramova EI, Mirkasyimov AB, Griaznova OY, Konovalova EV, Schulga AA, Deyev SM. The Barnase-Barstar-based pre-targeting strategy for enhanced antitumor therapy in vivo. Biochimie 2024:S0300-9084(24)00221-9. [PMID: 39307408 DOI: 10.1016/j.biochi.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
There is a great need for novel approaches to the treatment of epithelial ovarian carcinoma, which is the leading cause of mortality from gynecological malignancies. In this study, the pre-targeting technology was used to enhance the in vivo targeting of cytotoxic module composed of nanoliposomes loaded with a truncated form of Pseudomonas aeruginosa exotoxin A (PE40) to cancer cells. Pre-targeting system used in this study is composed of bacterial ribonuclease Barnase and its natural antitoxin Barstar. Barstar, genetically fused to various engineered scaffold proteins specific to tumor-associated antigens (HER2, EpCAM) serves as a primary module for precise cancer cell recognition. Barnase conjugated to a therapeutic agent serves as a cytotoxic or secondary module for malignant cell elimination. Due to strong non-covalent interaction (KD10-14 M) of Barstar and Barnase, the primary and secondary modules efficiently interact with each other on the cell surface, which has been proven by confocal microscopy and flow cytometry. Using mice with SKOV-3 ovarian cancer xenografts, we have shown that regardless of the targeting module, the pre-targeting approach is much more effective than a single-step active targeting.
Collapse
Affiliation(s)
- G M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia.
| | - E I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - A B Mirkasyimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia; Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - O Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - E V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - A A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia; National Research Center "Kurchatov Institute", Moscow, 123182, Russia; Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| |
Collapse
|
2
|
Anurogo D, Liu CL, Chang YC, Chang YH, Qiu JT. Discovery of differentially expressed proteins for CAR-T therapy of ovarian cancers with a bioinformatics analysis. Aging (Albany NY) 2024; 16:11409-11433. [PMID: 39033780 PMCID: PMC11315388 DOI: 10.18632/aging.206024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Target antigens are crucial for developing chimeric antigen receptor (CAR)-T cells, but their application to ovarian cancers is limited. This study aimed to identify potential genes as CAR-T-cell antigen candidates for ovarian cancers. A differential gene expression analysis was performed on ovarian cancer samples from four datasets obtained from the GEO datasets. Functional annotation, pathway analysis, protein localization, and gene expression analysis were conducted using various datasets and tools. An oncogenicity analysis and network analysis were also performed. In total, 153 differentially expressed genes were identified in ovarian cancer samples, with 60 differentially expressed genes expressing plasma membrane proteins suitable for CAR-T-cell antigens. Among them, 21 plasma membrane proteins were predicted to be oncogenes in ovarian cancers, with nine proteins playing crucial roles in the network. Key genes identified in the oncogenic pathways of ovarian cancers included MUC1, CXCR4, EPCAM, RACGAP1, UBE2C, PRAME, SORT1, JUP, and CLDN3, suggesting them as recommended antigens for CAR-T-cell therapy for ovarian cancers. This study sheds light on potential targets for immunotherapy in ovarian cancers.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, Indonesia
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chu Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - J. Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
3
|
Ibrahim HM, Abdelrahman AE, Elsebai E, Gharieb SA, Fahmy MM, Ramadan MS, Wasfy MA, Abdullatif A. Clinicopathologic Impact of NANOG, ZEB1, and EpCAM Biomarkers on Prognosis of Serous Ovarian Carcinoma. Asian Pac J Cancer Prev 2023; 24:3247-3259. [PMID: 37774079 PMCID: PMC10762767 DOI: 10.31557/apjcp.2023.24.9.3247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVES Serous ovarian carcinoma (SOC) is a biologically heterogeneous with different genomic and molecular profiles, beside clinical response to the chemotherapy with subsequent in obstacles in starting unified, acceptable treatments and so we assess immunoexpression of Nanog, ZEB1, and EpCAM in SOC. METHODS In this study, the immunoexpression of Nanog, ZEB1, and EpCAM was studied in 60 cases of SOC. Overall survival (OS), disease-free survival (DFS) data and response to chemotherapy were analyzed. RESULTS NANOG was immunostained in 65% of the cases with a significant association with tumor grade, lymph node metastasis, and FIGO stage (p < 0.001 for each). ZEB1 showed moderate- high expression in 58.3% of the cases with significant up-regulation of ZEB1 expression with SOC grade, nodal metastasis, and SOC FIGO stage (p<0.001). EpCAM revealed high expression in 60% of the cases with significant association with higher grade, nodal metastasis, and advanced stage (p < 0.001 for each). Up-regulation of Nanog was significantly associated with response to chemotherapy, relapse, shorter OS and DFS (p < 0.001 for each). ZEB1 overexpression exhibited a significant association with response to chemotherapy (p= 0.012), relapse, shorter OS and DFS (p<0.001 for each). Moreover, the high EpCAM had a significant association with response to chemotherapy (p= 0.043), relapse (p < 0.001) shorter OS (p=0.006) and DFS (p< 0.001). CONCLUSIONS Up-regulation of Nanog and ZEB-1 and EpCAM perhaps promote an aggressive SOC with a high risk of relapse and unfavorable response to standard chemotherapy regimen.
Collapse
Affiliation(s)
- Hanaa M. Ibrahim
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.
| | | | - Eman Elsebai
- Department ofClinical Oncology, Faculty of Medicine, Zagazig University, Egypt.
| | - Shimaa A. Gharieb
- Department ofClinical Oncology, Faculty of Medicine, Zagazig University, Egypt.
| | - Moamna M. Fahmy
- Department ofClinical Oncology, Faculty of Medicine, Zagazig University, Egypt.
| | - Mohamed S.H. Ramadan
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Egypt.
| | - Mohamed A. Wasfy
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Egypt.
| | - Asmaa Abdullatif
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|
4
|
Wiseman L, Cinti N, Guinn BA. Identification and prioritization of tumour-associated antigens for immunotherapeutic and diagnostic capacity in epithelial ovarian cancer: a systematic literature review. Carcinogenesis 2022; 43:1015-1029. [PMID: 36318800 DOI: 10.1093/carcin/bgac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/18/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a prevalent carcinoma in the female population associated with poor prognostic outcomes, in part due to the late stage of the disease at diagnosis. Aiming to identify tumour-associated antigens (TAAs) with the potential to facilitate earlier detection and targeted therapy of EOC, five scientific literature repositories were systemically searched for primary literature sources reporting the expression of a TAA in the tissue or serum of adult females diagnosed with EOC and healthy women. We identified 7120 articles of which 32 met our inclusion criteria and passed the bias-quality assessment. Subsequently, data were collated on 29 TAAs whose expression had been analysed in 2181 patients and 589 healthy individuals. Reports of CA125 and EpCAM expression were numerous while tissue expression data were available for 28 TAAs. Data were segregated into three meta-cohorts for statistical scrutiny and their capacity for diagnostic and treatment targeting was assessed. We showed that CA-125 was expressed homogenously in EOC patients while EpCAM was expressed heterogeneously. CA-125 was the most promising TAA target for both diagnosis and treatment, gaining a priority score of 12 (/12) while EpCAM gained a priority score of seven. Tissue expression of EOC TAAs was homogenous; 90% of the EOC population express any identified TAA while just 20% of healthy individuals will be positive for the same TAA. We suggest TAA profiling should be a fundamental aspect of EOC diagnosis, sitting alongside the FIGO framework, promoting reduced mortality and directing the development of TAA-targeted therapeutics.
Collapse
Affiliation(s)
- Lucy Wiseman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Noemi Cinti
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Barbara-Ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
5
|
Wang YJ, Tang L, Lu XH, Liu JT, Wang YY, Geng HX, Li XT, An Q. Efficacy of epi-1 modified epirubicin and curcumin encapsulated liposomes targeting-EpCAM in the inhibition of epithelial ovarian cancer cells. J Liposome Res 2022:1-17. [PMID: 36440599 DOI: 10.1080/08982104.2022.2153138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.
Collapse
Affiliation(s)
- Yu-Jia Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ling Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xu-Hong Lu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ji-Tao Liu
- Technology Research and Development Centre, Yunnan Baiyao Group Health Products Co., Ltd, Kunming, China
| | - Yuan-Yuan Wang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Hong-Xia Geng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Quan An
- Technology Research and Development Centre, Yunnan Baiyao Group Health Products Co., Ltd, Kunming, China
| |
Collapse
|
6
|
Kamal IM, Temerik DF, Yassin EH, Mosad E, A H, Hussien MT. Prognostic Outcome of Mesenchymal Transition Biomarkers in Correlation with EGFR Expression in Epithelial Ovarian Carcinoma Patients. Asian Pac J Cancer Prev 2022; 23:4213-4225. [PMID: 36580004 PMCID: PMC9971466 DOI: 10.31557/apjcp.2022.23.12.4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND CD44 is an epithelial-mesenchymal transition (EMT) surface receptor that regulates the interactivity between the cells and the extracellular matrix, thereby promoting cell migration. The epidermal growth factor receptor (EGFR) family is a trans-membrane kinase-related protein. It regulates cell adhesion proteins, which may promote cell proliferation and invasiveness. Mesenchymal epithelial transition (MET) is another EMT receptor that stimulates cell proliferation, invasion, survival, and angiogenesis. This study aimed to evaluate the prognostic impact of CD44, EGFR expressions, and MET gene amplification in epithelial ovarian cancer (EOC). METHODS This is a retrospective cohort study, including 85 cases of EOC. CD44 and EGFR expressions were evaluated in both epithelial and stromal cells by immunohistochemistry. Tumor cells also underwent a cytogenetic analysis using fluorescent in situ hybridization (FISH) to detect MET gene amplification. RESULTS High CD44 expression in tumors was significantly associated with serous subtypes (P=0.001), peritoneal deposits (P=0.002), and advanced stage (P=0.002). EGFR high tumor expression demonstrated a significant association with lymph node metastasis (P=0.038) and the advanced stage of EOC (P=0.016). Increased copy number of the MET gene was significantly associated with partial therapy response (P=0.030). CD44 and EGFR tumor high expression was associated with poor overall survival (OS). In addition, MET gene gain in tumors was associated with a shorter OS (P=0.000). CONCLUSION EMT biomarkers (CD44 and MET) and EGFR expression in EOC are independent prognostic factors for OS. MET gene increase copy number was detected in cases of serous neoplasm and associated with poor survival and minimal therapy response.
Collapse
Affiliation(s)
- Israa Mostafa Kamal
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Doaa F Temerik
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Etemad H Yassin
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Eman Mosad
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Hanan A
- Department of Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut Egypt.
| | - Marwa T Hussien
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt. ,For Correspondence:
| |
Collapse
|
7
|
Eijkenboom L, Palacio-Castañeda V, Groenman F, Braat D, Beerendonk C, Brock R, Verdurmen W, Peek R. Assessing the use of tumor-specific DARPin-toxin fusion proteins for ex vivo purging of cancer metastases from human ovarian cortex before autotransplantation. F&S SCIENCE 2021; 2:330-344. [PMID: 35559858 DOI: 10.1016/j.xfss.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To assess the use of tumor-specific designed ankyrin repeat proteins (DARPins) fused to a domain of Pseudomonas aeruginosa exotoxin A for purging of cancer metastases from the ovarian cortex. DESIGN Experimental study. SETTING University medical center. PATIENT(S) Human ovarian cortex. INTERVENTION(S) Ovarian cortex harboring artificially induced breast cancer metastases was treated with DARPins targeted to epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor 2 (HER2). MAIN OUTCOME MEASURE(S) The presence of any remaining cancer cells after purging was analyzed by (immuno)histochemistry and reverse transcriptase polymerase chain reaction. Effects on the viability of the ovarian cortex were determined by (immuno)histology, a follicular viability assay, and an assay to determine the in vitro growth capacity of small follicles. RESULT(S) After purging with EpCAM-targeted DARPin, all EpCAM-positive breast cancer cells were eradicated from the ovarian cortex. Although treatment had no effect on the morphology or viability of small follicles, a sharp decrease in oocyte viability during in vitro growth was observed, presumably due to low-level expression of EpCAM on oocytes. The HER2-targeted DARPins had no detrimental effects on the morphology, viability, or in vitro growth of small follicles. HER2-positive breast cancer foci were fully eliminated from the ovarian cortex, and the reverse transcriptase polymerase chain reaction showed a decrease to basal levels of HER2 mRNA after purging. CONCLUSION(S) Purging cancer metastases from ovarian cortex without impairing ovarian tissue integrity is possible by targeting tumor cell surface proteins with exotoxin A-fused DARPins. By adapting the target specificity of the cytotoxic DARPin fusions, it should be possible to eradicate metastases from all types of malignancies.
Collapse
Affiliation(s)
- Lotte Eijkenboom
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, Netherlands
| | - Didi Braat
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catharina Beerendonk
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Wouter Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Peek
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
8
|
Tavsan Z, Kayali HA. Protein Kinase C regulates the complex between cell membrane molecules in ovarian cancer. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Kapka-Skrzypczak L, Popek S, Sawicki K, Drop B, Czajka M, Jodłowska-Jędrych B, Matysiak-Kucharek M, Furman-Toczek D, Zagórska-Dziok M, Kruszewski M. IL‑6 prevents CXCL8‑induced stimulation of EpCAM expression in ovarian cancer cells. Mol Med Rep 2019; 19:2317-2322. [PMID: 30747214 DOI: 10.3892/mmr.2019.9890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 11/06/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM), which is expressed in the majority of epithelial tissues, exhibits tumor growth promoting abilities and is overexpressed in human epithelial ovarian cancer. Therefore, EpCAM is considered to be a promising target for specific immune‑based therapies. The present study evaluated the role of IL‑6 and IL‑8 in the expression of EpCAM in the A2780 human ovarian cancer cell line. Furthermore, the cellular localization of the EpCAM protein in A2780 cells was determined and the effect of EpCAM inhibition on the proliferation of the A2780 cells was investigated. An MTT assay demonstrated that blocking EpCAM with anti‑EPCAM antibodies had no effect on cellular metabolic activity (proliferation). Gene expression analysis revealed that IL‑8 increased EpCAM expression, whereas IL‑6 and the combination of IL‑6/IL‑8 had no effect on EpCAM expression. Immunofluorescence analysis confirmed that EpCAM is expressed on A2780 cell membranes. The present results demonstrated that IL‑8 increased EpCAM expression at the mRNA level in ovarian cancer cells and suggested a potential role of IL‑6 as an inhibitor of IL‑8‑stimulated EpCAM expression.
Collapse
Affiliation(s)
- Lucyna Kapka-Skrzypczak
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Sylwia Popek
- Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, 20‑080 Lublin, Poland
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 0‑090 Lublin, Poland
| | - Bartłomiej Drop
- Department of Informatics and Medical Statistics, Faculty of Health Sciences, Medical University, 20‑090 Lublin, Poland
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 0‑090 Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20‑080 Lublin, Poland
| | | | - Dominika Furman-Toczek
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Martyna Zagórska-Dziok
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Marcin Kruszewski
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| |
Collapse
|
10
|
Azimian-Zavareh V, Hossein G, Ebrahimi M, Dehghani-Ghobadi Z. Wnt11 alters integrin and cadherin expression by ovarian cancer spheroids and inhibits tumorigenesis and metastasis. Exp Cell Res 2018; 369:90-104. [PMID: 29753625 DOI: 10.1016/j.yexcr.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
The present study investigated the role of Wnt11 in multicellular tumor spheroid-like structures (MCTS) ovarian cancer cell proliferation, migration and invasion in vitro and in vivo tumorigenesis and metastasis in xenograft nude mice model. Moreover, samples from human serous ovarian cancer (SOC) were used to assess the association of Wnt11 with integrins and cadherins. The data showed that Wnt11 overexpressing SKOV-3 cells became more compact accompanied by increased expression of E-and N-cadherin and lower expression of EpCAM and CD44. The α5, β2, β3 and β6 integrin subunits expression levels were significantly reduced in Wnt11 overexpressing cells accompanied with significantly reduced disaggregation of Wnt11 overexpressing SKOV-3 MCTS on ECM components. Moreover, Wnt11 overexpressing SKOV-3 MCTS showed decreased migration, invasion as well as no tumor growth and metastasis in vivo. We found that Wnt11 significantly and negatively correlated with ITGB2, ITGB6, and EpCAM and positively with CDH-1 in high-grade SOC specimens. Our results suggest that Wnt11 impedes MCTS attachment to ECM components and therefore can affect ovarian cancer progression.
Collapse
Affiliation(s)
- Vajihe Azimian-Zavareh
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ghamartaj Hossein
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Diagnostic and Prognostic Biomarkers in ovarian cancer and the potential roles of cancer stem cells – An updated review. Exp Cell Res 2018; 362:1-10. [DOI: 10.1016/j.yexcr.2017.10.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023]
|