1
|
Wu CC, Hou BC, Yang YH, Li XF, Ma HC, Li BX. Circ_0084188 promotes colorectal cancer progression by sponging miR-654-3p and regulating kruppel-like factor 12. Kaohsiung J Med Sci 2023; 39:1062-1076. [PMID: 37698263 DOI: 10.1002/kjm2.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023] Open
Abstract
To investigate the biological role and mechanism of circ_0084188 in colorectal cancer (CRC). Real-time quantitative polymerase chain reaction and western blot assay were used to detect RNA levels and protein levels in CRC cell lines (HCT116 and SW480), respectively. Cell proliferation was evaluated by Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, and colony formation assays. Cell apoptosis was determined using flow cytometry. Cell migration and invasion were measured by transwell assay. Sphere formation efficiency was determined by sphere formation assay. The interaction between microRNA-654-3p (miR-654-3p) and circ_0084188 or Kruppel-like factor 12 (KLF12) was confirmed by a dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Xenograft in CRC mice model was utilized for exploring the role of circ_0084188 in vivo.Circ_0084188 was overexpressed in CRC tissues and cells. Circ_0084188 silencing suppressed cell proliferation, migration, invasion, and stemness and induced apoptosis in CRC cells. Circ_0084188 acted as a sponge for miR-654-3p, and circ_0084188 regulated CRC cell behaviors via sponging miR-654-3p. Moreover, KLF12 was a target of miR-654-3p, and miR-654-3p overexpression inhibited the malignant behaviors of CRC cells by downregulating KLF12. Mechanically, circ_0084188 sponged miR-654-3p to regulate KLF12 expression in CRC cells. In addition, circ_0084188 downregulation inhibited tumor growth in vivo.Circ_0084188 knockdown might repress CRC progression partially via regulating the miR-654-3p/KLF12 axis, providing a novel insight into the pathogenesis of CRC.
Collapse
Affiliation(s)
- Cui-Cui Wu
- Department of Clinical Laboratory, Affiliated Hospital of Beihua University, Jilin, China
| | - Bai-Chun Hou
- Department of Clinical Laboratory, Affiliated Hospital of Beihua University, Jilin, China
| | - Yu-Han Yang
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xue-Feng Li
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hong-Chao Ma
- Department of Clinical Laboratory, Affiliated Hospital of Beihua University, Jilin, China
| | - Bin-Xian Li
- Department of Clinical Laboratory, Affiliated Hospital of Beihua University, Jilin, China
| |
Collapse
|
2
|
Liu Y, Jiang C, Liu Q, Huang R, Wang M, Guo X. CircRNAs: emerging factors for regulating glucose metabolism in colorectal cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03131-7. [PMID: 36944731 DOI: 10.1007/s12094-023-03131-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/19/2023] [Indexed: 03/23/2023]
Abstract
Colorectal cancer is a malignant disease with a high incidence and low survival rate, and the effectiveness of traditional treatments, such as surgery and radiotherapy, is very limited. CircRNAs, a kind of stable endogenous circular RNA, generally function by sponging miRNAs and binding or translating proteins. CircRNAs have been identified to play an important role in regulating the proliferation and metabolism of CRC. In recent years, many reports have indicated that by regulating the expression of glycolysis-related proteins, such as GLUT1 and HK2, or directly translating proteins, circRNAs can promote the Warburg effect in cancer cells, thereby driving CRC metabolism. Moreover, the Warburg effect increases lactate production in cancer cells and promotes acidification of the TME, which further drives cancer progression. In this review, we summarized the remarkable role of circRNAs in regulating glucose metabolism in CRC in recent years, which might be useful for finding new targets for the clinical treatment of CRC.
Collapse
Affiliation(s)
- Yulin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Mancai Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
- General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaohu Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China.
- General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Weidle UH, Nopora A. Up-regulated Circular RNAs in Colorectal Cancer: New Entities for Therapy and Tools for Identification of Therapeutic Targets. Cancer Genomics Proteomics 2023; 20:132-153. [PMID: 36870691 PMCID: PMC9989668 DOI: 10.21873/cgp.20369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/06/2023] Open
Abstract
Patients with disseminated colorectal cancer have a dismal prognosis with a 5-year survival rate of only 13%. In order to identify new treatment modalities and new targets, we searched the literature for up-regulated circular RNAs in colorectal cancer which induce tumor growth in corresponding preclinical in vivo models. We identified nine circular RNAs that mediate resistance against chemotherapeutic agents, seven that up-regulate transmembrane receptors, five that induce secreted factors, nine that activate signaling components, five which up-regulate enzymes, six which activate actin-related proteins, six which induce transcription factors and two which up-regulate the MUSASHI family of RNA binding proteins. All of the circular RNAs discussed in this paper induce the corresponding targets by sponging microRNAs (miRs) and can be inhibited by RNAi or shRNA in vitro and in xenograft models. We have focused on circular RNAs with demonstrated activity in preclinical in vivo models because the latter is an important milestone in drug development. All circular RNAs with in vitro activity only data are not referenced in this review. The translational impact of inhibition of these circular RNAs and of the identified targets for treatment of colorectal cancer (CRC) are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
4
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
5
|
LncRNA surfactant associated 1 activates large tumor suppressor kinase 1/Yes-associated protein pathway via modulating hypoxic exosome-delivered miR-4766–5p to inhibit lung adenocarcinoma metastasis. Int J Biochem Cell Biol 2022; 153:106317. [DOI: 10.1016/j.biocel.2022.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
|
6
|
Huang Y, Chen Z, Zhou X, Huang H. Circ_0000467 Exerts an Oncogenic Role in Colorectal Cancer via miR-330-5p-Dependent Regulation of TYRO3. Biochem Genet 2022; 60:1488-1510. [PMID: 35039980 DOI: 10.1007/s10528-021-10171-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Colorectal cancer (CRC) remains one of the most frequent neoplasms of digestive tract worldwide. Circular RNAs (circRNAs) have been identified to serve crucial regulatory roles in the pathogenesis of human cancers. However, the role and regulatory mechanism of circ_0000467 in the progression of CRC are still unclear. The expression levels of circ_0000467, microRNA-330-5p (miR-330-5p), and tyrosine receptor kinase 3 (TYRO3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-330-5p and circ_0000467 or TYRO3 was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft tumor assay and Immunohistochemistry (IHC) assay were implemented to analyze CRC tumor growth in vivo. Circ_0000467 was a stable circRNA and was highly expressed in CRC tumor tissues and cells. Silencing of circ_0000467 could inhibit the proliferation, migration, invasion, and glycolysis and accelerated the apoptosis of CRC cells in vitro and hindered tumor growth in vivo. Mechanistically, circ_0000467 directly interacted with miR-330-5p and circ_0000467 depletion inhibited CRC cell malignant progression by regulating miR-330-5p. Furthermore, TYRO3 was a target of miR-330-5p and circ_0000467 upregulated TYRO3 expression by sponging miR-330-5p. Moreover, TYRO3 overexpression counteracted the inhibitory effect of miR-330-5p overexpression or circ_0000467 knockdown on CRC cell progression. Altogether, circ_0000467 knockdown suppressed CRC cell malignant development through modulating the miR-330-5p/TYRO3 network, providing a novel molecular target of CRC therapy.
Collapse
Affiliation(s)
- Yubao Huang
- Department of Anorectal Surgery, Huizhou Municipal Central Hospital, No. 12, Eling North Road, Huicheng District, Huizhou City, 516001, Guangdong Province, China.
| | - Zhiyu Chen
- Department of Anorectal Surgery, Huizhou Municipal Central Hospital, No. 12, Eling North Road, Huicheng District, Huizhou City, 516001, Guangdong Province, China
| | - Xiong Zhou
- Department of Anorectal Surgery, Huizhou Municipal Central Hospital, No. 12, Eling North Road, Huicheng District, Huizhou City, 516001, Guangdong Province, China
| | - Hai Huang
- Department of Anorectal Surgery, Huizhou Municipal Central Hospital, No. 12, Eling North Road, Huicheng District, Huizhou City, 516001, Guangdong Province, China
| |
Collapse
|