1
|
Yadav KK, Shamir D, Kornweitz H, Peled Y, Zohar M, Burg A. Development of Meta-Chemical Surface by Dip-Pen Nanolithography for Precise Electrochemical Lead Sensing. SMALL METHODS 2024; 8:e2301118. [PMID: 38029319 DOI: 10.1002/smtd.202301118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Dip-pen nanolithography (DPN) is a powerful and unique technique for precisely depositing tiny nano-spherical cap shapes (nanoclusters) onto a desired surface. In this study, a meta-chemical surface (MCS; a pattern with advanced features) is developed by DPN and applied to electrochemical lead sensing, yielding a calibration curve in the ppb range. An ink mixture of PMMA and NTPH (which binds to Pb (II), as supported by DFT calculations) is patterned over a Pt surface. The average height of the nanoclusters is ≈13 nm with a high surface area-to-volume ratio, which depends on the ink composition and the MCS surface. This ratio affected the sensitivity of the MCS as a detecting tool. The results indicate that the sensor's features can be controlled by the ability to control the size of the nanoclusters, attributed to the unique properties of the DPN production method. These results are significant for the water-source purification industry.
Collapse
Affiliation(s)
- Krishna K Yadav
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, 8410802, Israel
| | - Dror Shamir
- Analytical Chemistry Department, NRCN, Beer-Sheva, Israel
| | - Haya Kornweitz
- Chemical Sciences Department, Ariel University, Ariel, Israel
| | - Yael Peled
- Analytical Chemistry Department, NRCN, Beer-Sheva, Israel
| | - Moshe Zohar
- Department of Electrical and Electronics Engineering, Sami Shamoon College of Engineering, Beer Sheva, 8410802, Israel
| | - Ariela Burg
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, 8410802, Israel
| |
Collapse
|
2
|
Ryu J, Jo JS, Choi JH, Kim DY, Kim J, Park DH, Jang JW. Aluminum Hydroxide Nano- and Microstructures Fabricated Using Scanning Probe Lithography with KOH Ink. ACS OMEGA 2023; 8:10439-10448. [PMID: 36969412 PMCID: PMC10034775 DOI: 10.1021/acsomega.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Using scanning probe lithography (SPL) with KOH ink, this study fabricates aluminum hydroxide (Al(OH)3) nano- and microfeatures on a gold (Au) film that has been deposited on an aluminum (Al) layer. Hydroxyl ions (OH-) from the KOH ink loaded onto the Au film can react with the underlying Al layer to form Al(OH)3 structures due to the decrease in the pH of the reacting solution.1 In this process, Al(OH)3 solidification is governed by the pH of the KOH ink solution, which is affected by its volume. Suitably small volumes (down to hundreds of attoliters) of the KOH ink solution can be applied to the substrate surface using dip-pen nanolithography (DPN) and polymer-pen lithography (PPL). Using DPN and PPL printing with the solid (i.e., gel) and liquid phases of KOH ink, sub-micron- (minimum ≈300 nm) and micron-sized (≥4 μm) Al(OH)3 features can be obtained, respectively. The fabrication of Al(OH)3 structures using the proposed pH-dependent solidification process can be achieved with relatively small volumes in ambient conditions without requiring a previously reported molding process.1,2.
Collapse
Affiliation(s)
- Jehyeok Ryu
- Department
of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Jeong-Sik Jo
- Division
of Physics and Semiconductor Science, Dongguk
University, Seoul 04620, Republic
of Korea
| | - Jin-Hyun Choi
- Department
of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Deuk Young Kim
- Division
of Physics and Semiconductor Science, Dongguk
University, Seoul 04620, Republic
of Korea
- Quantum-Functional
Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea
| | - Jiyoun Kim
- Department
of Chemical Engineering, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong Hyuk Park
- Department
of Chemical Engineering, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Won Jang
- Division
of Physics and Semiconductor Science, Dongguk
University, Seoul 04620, Republic
of Korea
- Quantum-Functional
Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Mei Y, Huang W, Di W, Wang X, Zhu Z, Zhou Y, Huo F, Wang W, Cao Y. Mechanochemical Lithography. J Am Chem Soc 2022; 144:9949-9958. [PMID: 35637174 DOI: 10.1021/jacs.2c02883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surfaces with patterned biomolecules have wide applications in biochips and biomedical diagnostics. However, most patterning methods are inapplicable to physiological conditions and incapable of creating complex structures. Here, we develop a mechanochemical lithography (MCL) method based on compressive force-triggered reactions. In this method, biomolecules containing a bioaffinity ligand and a mechanoactive group are used as mechanochemical inks (MCIs). The bioaffinity ligand facilitates concentrating MCIs from surrounding solutions to a molded surface, enabling direct and continuous printing in an aqueous environment. The mechanoactive group facilitates covalent immobilization of MCIs through force-triggered reactions, thus avoiding the broadening of printed features due to the diffusion of inks. We discovered that the ubiquitously presented amino groups in biomolecules can react with maleimide through a force-triggered Michael addition. The resulting covalent linkage is mechanically and chemically stable. As a proof-of-concept, we fabricate patterned surfaces of biotin and His-tagged proteins at nanoscale spatial resolution by MCL and verify the resulting patterns by fluorescence imaging. We further demonstrated the creation of multiplex protein patterns using this technique.
Collapse
Affiliation(s)
- Yuehai Mei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wenmao Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Weishuai Di
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhenshu Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yanyan Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210093, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
4
|
Zhao W, Yan Y, Chen X, Wang T. Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning. Innovation (N Y) 2022; 3:100253. [PMID: 35602121 PMCID: PMC9117940 DOI: 10.1016/j.xinn.2022.100253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Functional nanoparticles (NPs) with unique photoelectric, mechanical, magnetic, and chemical properties have attracted considerable attention. Aggregated NPs rather than individual NPs are generally required for sensing, electronics, and catalysis. However, the transformation of functional NP aggregates into scalable, controllable, and affordable functional devices remains challenging. Printing is a promising additive manufacturing technology for fabricating devices from NP building blocks because of its capabilities for rapid prototyping and versatile multifunctional manufacturing. This paper reviews recent advances in NP patterning based on the combination of self-assembly and printing technologies (including two-, three-, and four-dimensional printing), introduces the basic characteristics of these methods, and discusses various fields of NP patterning applications. Nanoparticles (NPs) printing assembly is a good solution for patterned devices NPs assembly can be combined with 2D, 3D, and 4D printing technologies A variety of ink-dispersed NPs are available for printing assembly NPs printing assembly technology is applied for nanosensing, energy storage, photodetector
Collapse
Affiliation(s)
- Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanling Yan
- National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- Corresponding author
| |
Collapse
|
5
|
Arrabito G, Gulli D, Alfano C, Pignataro B. "Writing biochips": high-resolution droplet-to-droplet manufacturing of analytical platforms. Analyst 2022; 147:1294-1312. [PMID: 35275148 DOI: 10.1039/d1an02295d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of high-resolution molecular printing allows the engineering of analytical platforms enabling applications at the interface between chemistry and biology, i.e. in biosensing, electronics, single-cell biology, and point-of-care diagnostics. Their successful implementation stems from the combination of large area printing at resolutions from sub-100 nm up to macroscale, whilst controlling the composition and volume of the ink, and reconfiguring the deposition features in due course. Similar to handwriting pens, the engineering of continuous writing systems tackles the issue of the tedious ink replenishment between different printing steps. To this aim, this review article provides an unprecedented analysis of the latest continuous printing methods for bioanalytical chemistry, focusing on ink deposition systems based on specific sets of technologies that have been developed to this aim, namely nanofountain probes, microcantilever spotting, capillary-based polymer pens and continuous 3D printing. Each approach will be discussed revealing the most important applications in the fields of biosensors, lab-on-chips and diagnostics.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy.
| | - Daniele Gulli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy.
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo 90133, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy.
| |
Collapse
|
6
|
Singh A, Shi A, Claridge SA. Nanometer-scale patterning of hard and soft interfaces: from photolithography to molecular-scale design. Chem Commun (Camb) 2022; 58:13059-13070. [DOI: 10.1039/d2cc05221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many areas of modern materials chemistry, from nanoscale electronics to regenerative medicine, require design of precisely-controlled chemical environments at near-molecular scales on both hard and soft surfaces.
Collapse
Affiliation(s)
- Anamika Singh
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Anni Shi
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Shelley A. Claridge
- Purdue University, Chemistry and Biomedical Engineering, 560 Oval Drive, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Arrabito G, Ferrara V, Bonasera A, Pignataro B. Artificial Biosystems by Printing Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907691. [PMID: 32511894 DOI: 10.1002/smll.201907691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Indexed: 05/09/2023]
Abstract
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life-like or life-inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life-inspired fabrication.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Vittorio Ferrara
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, Catania, 95125, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| |
Collapse
|
8
|
Abstract
Solution-based printing approaches permit digital designs to be converted into physical objects by depositing materials in a layer-by-layer additive fashion from microscale to nanoscale resolution. The extraordinary adaptability of this technology to different inks and substrates has received substantial interest in the recent literature. In such a context, this review specifically focuses on the realization of inks for the deposition of ZnO, a well-known wide bandgap semiconductor inorganic material showing an impressive number of applications in electronic, optoelectronic, and piezoelectric devices. Herein, we present an updated review of the latest advancements on the ink formulations and printing techniques for ZnO-based nanocrystalline inks, as well as of the major applications which have been demonstrated. The most relevant ink-processing conditions so far explored will be correlated with the resulting film morphologies, showing the possibility to tune the ZnO ink composition to achieve facile, versatile, and scalable fabrication of devices of different natures.
Collapse
|
9
|
Liu G, Petrosko SH, Zheng Z, Mirkin CA. Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chem Rev 2020; 120:6009-6047. [DOI: 10.1021/acs.chemrev.9b00725] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Arrabito G, Ferrara V, Ottaviani A, Cavaleri F, Cubisino S, Cancemi P, Ho YP, Knudsen BR, Hede MS, Pellerito C, Desideri A, Feo S, Pignataro B. Imbibition of Femtoliter-Scale DNA-Rich Aqueous Droplets into Porous Nylon Substrates by Molecular Printing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17156-17165. [PMID: 31790261 DOI: 10.1021/acs.langmuir.9b02893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work presents the first reported imbibition mechanism of femtoliter (fL)-scale droplets produced by microchannel cantilever spotting (μCS) of DNA molecular inks into porous substrates (hydrophilic nylon). Differently from macroscopic or picoliter droplets, the downscaling to the fL-size leads to an imbibition process controlled by the subtle interplay of evaporation, spreading, viscosity, and capillarity, with gravitational forces being quasi-negligible. In particular, the minimization of droplet evaporation, surface tension, and viscosity allows for a reproducible droplet imbibition process. The dwell time on the nylon surface permits further tuning of the droplet lateral size, in accord with liquid ink diffusion mechanisms. The functionality of the printed DNA molecules is demonstrated at different imbibed oligonucleotide concentrations by hybridization with a fluorolabeled complementary sequence, resulting in a homogeneous coverage of DNA within the imbibed droplet. This study represents a first step toward the μCS-enabled fabrication of DNA-based biosensors and microarrays into porous substrates.
Collapse
Affiliation(s)
- G Arrabito
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| | - V Ferrara
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , Catania 95125 , Italy
| | - A Ottaviani
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy
| | - F Cavaleri
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| | - S Cubisino
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| | - P Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , Building 16, V.le delle Scienze , Palermo 90128 , Italy
| | - Y P Ho
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong SAR , China
- Centre for Novel Biomaterials , The Chinese University of Hong Kong , Hong Kong SAR , China
| | - B R Knudsen
- Department of Molecular Biology and Genetics , Aarhus University , C.F. Møllers Allé 3 , Aarhus C 8000 , Denmark
- iNANO , Aarhus University , Gustav Wieds Vej 14 , Aarhus 8000 , Denmark
| | - M S Hede
- VPCIR.COM , CF. Møllers Alle 3 , Aarhus C 800 , Denmark
| | - C Pellerito
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| | - A Desideri
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy
| | - S Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies , University of Palermo , Building 16, V.le delle Scienze , Palermo 90128 , Italy
| | - B Pignataro
- Department of Physics and Chemistry "Emilio Segrè" , University of Palermo , Building 17, V.le delle Scienze , Palermo 90128 , Italy
| |
Collapse
|
11
|
Tourtit Y, Gilet T, Lambert P. Rupture of a Liquid Bridge between a Cone and a Plane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11979-11985. [PMID: 31497966 DOI: 10.1021/acs.langmuir.9b01295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a systematic experimental study of the rupture of an axially symmetric liquid bridge between a cone and a plane was performed, with focus on the volume distribution after break up. A model based on the Young-Laplace equation is presented, and its solutions are compared to experimental data. Cones and conical cavities with different aperture angles were used in our experiments. We found that this aperture influences the potential pinning of the contact line, the meniscus shape, and therefore the liquid transfer. For half aperture angles α < 70°, where no pinning was observed, the liquid bridge slips off from the cone and almost no transfer to the cone is observed. However, at α > 70°, contact line pinning on the cone induces a net liquid transfer to the cone at rupture. In the case of conical cavities, a maximum of liquid transfer is observed for at α = 110°. The distance at which the rupture of the liquid bridge occurs is also discussed. The model can fairly predict the transfer ratio and the rupture height of the liquid bridge.
Collapse
Affiliation(s)
- Youness Tourtit
- Transfers, Interfaces and Processes , Université Libre de Bruxelles , 50 Franklin D. Roosevelt , CP 165/67 B-1050 , Brussels , Belgium
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering , University of Liège , quartier Polytech 1, Allée de la Découverte 13A , B52 4000 Liège , Belgium
| | - Tristan Gilet
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering , University of Liège , quartier Polytech 1, Allée de la Découverte 13A , B52 4000 Liège , Belgium
| | - Pierre Lambert
- Transfers, Interfaces and Processes , Université Libre de Bruxelles , 50 Franklin D. Roosevelt , CP 165/67 B-1050 , Brussels , Belgium
| |
Collapse
|
12
|
Navikas V, Gavutis M, Rakickas T, Valiokas RN. Scanning Probe-Directed Assembly and Rapid Chemical Writing Using Nanoscopic Flow of Phospholipids. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28449-28460. [PMID: 31287949 DOI: 10.1021/acsami.9b07547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanofluidic systems offer a huge potential for discovery of new molecular transport and chemical phenomena that can be employed for future technologies. Herein, we report on the transport behavior of surface-reactive compounds in a nanometer-scale flow of phospholipids from a scanning probe. We have investigated microscopic deposit formation on polycrystalline gold by lithographic printing and writing of 1,2-dioleoyl-sn-glycero-3-phosphocholine and eicosanethiol mixtures, with the latter compound being a model case for self-assembled monolayers (SAMs). By analyzing the ink transport rates, we found that the transfer of thiols was fully controlled by the fluid lipid matrix allowing to achieve a certain jetting regime, i.e., transport rates previously not reported in dip-pen nanolithography (DPN) studies on surface-reactive, SAM-forming molecules. Such a transport behavior deviated significantly from the so-called molecular diffusion models, and it was most obvious at the high writing speeds, close to 100 μm s-1. Moreover, the combined data from imaging ellipsometry, scanning electron microscopy, atomic force microscopy (AFM), and spectroscopy revealed a rapid and efficient ink phase separation occurring in the AFM tip-gold contact zone. The force curve analysis indicated formation of a mixed ink meniscus behaving as a self-organizing liquid. Based on our data, it has to be considered as one of the co-acting mechanisms driving the surface reactions and self-assembly under such highly nonequilibrium, crowded environment conditions. The results of the present study significantly extend the capabilities of DPN using standard AFM instrumentation: in the writing regime, the patterning speed was already comparable to that achievable by using electron beam systems. We demonstrate that lipid flow-controlled chemical patterning process is directly applicable for rapid prototyping of solid-state devices having mesoscopic features as well as for biomolecular architectures.
Collapse
Affiliation(s)
- Vytautas Navikas
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| | - Martynas Gavutis
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| | - Tomas Rakickas
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| | - Ramu Nas Valiokas
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanorių 231 , Vilnius LT-02300 , Lithuania
| |
Collapse
|
13
|
Lai T, Li P. Direct Evidence of a Radius of Collection Area for Thin Film Flow in Liquid Bridge Formation by Repeated Contacts Using AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6585-6593. [PMID: 31035753 DOI: 10.1021/acs.langmuir.9b00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A liquid bridge in a nanoscale gap is of considerable significance in lots of scientific and industrial fields. However, the formation mechanism is not well understood, leading to many contradictory experimental results. In this work, contact experiments were carried out between tipless cantilevers coated with potassium hydroxide and a silica surface on an atomic force microscope under different relative humidities (RHs). Results show that capillary condensation is dominant and thin film flow is difficult or even impossible at low RHs (31-37%). However, at high RHs (62-82%), thin film flow is dominant and materials were collected with a domed three-dimensional feature in the contact zone. There was a circle centered at the feature with a radius of collection area (can be as large as ∼23.6 μm), inside which all of the liquid seems to flow into the water bridge. The radius of collection area is used as direct evidence and as a parameter to reflect the efficiency of thin film flow. This fabrication technique of a domed feature may be viewed as a promising additive manufacturing in the microscale, and this work may also shed some light on the study of the controversial RH dependence of capillary force and other related research works.
Collapse
Affiliation(s)
- Tianmao Lai
- School of Mechanical and Electric Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Ping Li
- School of Mechanical and Electric Engineering , Guangzhou University , Guangzhou 510006 , China
| |
Collapse
|
14
|
Writing Behavior of Phospholipids in Polymer Pen Lithography (PPL) for Bioactive Micropatterns. Polymers (Basel) 2019; 11:polym11050891. [PMID: 31096642 PMCID: PMC6572014 DOI: 10.3390/polym11050891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Lipid-based membranes play crucial roles in regulating the interface between cells and their external environment, the communication within cells, and cellular sensing. To study these important processes, various lipid-based artificial membrane models have been developed in recent years and, indeed, large-area arrays of supported lipid bilayers suit the needs of many of these studies remarkably well. Here, the direct-write scanning probe lithography technique called polymer pen lithography (PPL) was used as a tool for the creation of lipid micropatterns over large areas via polymer-stamp-mediated transfer of lipid-containing inks onto glass substrates. In order to better understand and control the lipid transfer in PPL, we conducted a systematic study of the influence of dwell time (i.e., duration of contact between tip and sample), humidity, and printing pressure on the outcome of PPL with phospholipids and discuss results in comparison to the more often studied dip-pen nanolithography with phospholipids. This is the first systematic study in phospholipid printing with PPL. Biocompatibility of the obtained substrates with up to two different ink compositions was demonstrated. The patterns are suitable to serve as a platform for mast cell activation experiments.
Collapse
|
15
|
Liu G, Hirtz M, Fuchs H, Zheng Z. Development of Dip-Pen Nanolithography (DPN) and Its Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900564. [PMID: 30977978 DOI: 10.1002/smll.201900564] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/08/2019] [Indexed: 05/13/2023]
Abstract
Dip-pen nanolithography (DPN) is a unique nanofabrication tool that can directly write a variety of molecular patterns on a surface with high resolution and excellent registration. Over the past 20 years, DPN has experienced a tremendous evolution in terms of applicable inks, a remarkable improvement in fabrication throughput, and the development of various derivative technologies. Among these developments, polymer pen lithography (PPL) is the most prominent one that provides a large-scale, high-throughput, low-cost tool for nanofabrication, which significantly extends DPN and beyond. These developments not only expand the scope of the wide field of scanning probe lithography, but also enable DPN and PPL as general approaches for the fabrication or study of nanostructures and nanomaterials. In this review, a focused summary and historical perspective of the technological development of DPN and its derivatives, with a focus on PPL, in one timeline, are provided and future opportunities for technological exploration in this field are proposed.
Collapse
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong SAR, China
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe, Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Harald Fuchs
- Institute of Nanotechnology (INT) and Karlsruhe, Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Physical Institute and Center for Nanotechnology (CeNTech), University of Münster, Münster, 48149, Germany
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong SAR, China
| |
Collapse
|
16
|
Brown KA, Hedrick JL, Eichelsdoerfer DJ, Mirkin CA. Nanocombinatorics with Cantilever-Free Scanning Probe Arrays. ACS NANO 2019; 13:8-17. [PMID: 30561191 DOI: 10.1021/acsnano.8b08185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effectiveness of combinatorial experiments is determined by the rate at which distinct experimental conditions can be prepared and interrogated. This has been particularly limiting at the intersection of nanotechnology and soft materials research, where structures are difficult to reliably prepare and materials are incompatible with conventional lithographic techniques. For example, studying nanoparticle-based heterogeneous catalysis or the interaction between biological cells and abiotic surfaces requires precise tuning of materials composition on the nanometer scale. Scanning probe techniques are poised to be major players in the combinatorial nanoscience arena because they allow one to directly deposit materials at high resolution without any harsh processing steps that limit material compatibility. The chief limitation of scanning probe techniques is throughput, as patterning with single probes is prohibitively slow in the context of large-scale combinatorial experiments. A recent paradigm shift circumvents this problem by fundamentally altering the architecture of scanning probes by replacing the conventionally used cantilever with a soft compliant film on a rigid substrate, a substitution that allows a densely packed array of probes to function in parallel in an inexpensive format. This is a major lithographic advance in terms of scalability, throughput, and versatility that, when combined with the development of approaches to actuate individual probes in cantilever-free arrays, sets the stage for scanning-probe-based tools to address scientific questions through nanocombinatorial studies in biology and materials science. In this review, we outline the development of cantilever-free scanning probe lithography and prospects for nanocombinatorial studies enabled by these tools.
Collapse
Affiliation(s)
- Keith A Brown
- Department of Mechanical Engineering, Division of Materials Science & Engineering, and Physics Department , Boston University , 110 Cummington Mall , Boston , Massachusetts 02215 , United States
| | | | | | - Chad A Mirkin
- Department of Mechanical Engineering, Division of Materials Science & Engineering, and Physics Department , Boston University , 110 Cummington Mall , Boston , Massachusetts 02215 , United States
| |
Collapse
|
17
|
Kumar R, Urtizberea A, Ghosh S, Bog U, Rainer Q, Lenhert S, Fuchs H, Hirtz M. Polymer Pen Lithography with Lipids for Large-Area Gradient Patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017. [PMID: 28650173 DOI: 10.1021/acs.langmuir.7b01368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gradient patterns comprising bioactive compounds over comparably (in regard to a cell size) large areas are key for many applications in the biomedical sector, in particular, for cell screening assays, guidance, and migration experiments. Polymer pen lithography (PPL) as an inherent highly parallel and large area technique has a great potential to serve in the fabrication of such patterns. We present strategies for the printing of functional phospholipid patterns via PPL that provide tunable feature size and feature density gradients over surface areas of several square millimeters. By controlling the printing parameters, two transfer modes can be achieved. Each of these modes leads to different feature morphologies. By increasing the force applied to the elastomeric pens, which increases the tip-surface contact area and boosts the ink delivery rate, a switch between a dip-pen nanolithography (DPN) and a microcontact printing (μCP) transfer mode can be induced. A careful inking procedure ensuring a homogeneous and not-too-high ink-load on the PPL stamp ensures a membrane-spreading dominated transfer mode, which, used in combination with smooth and hydrophilic substrates, generates features with constant height, independently of the applied force of the pens. Ultimately, this allows us to obtain a gradient of feature sizes over a mm2 substrate, all having the same height on the order of that of a biological cellular membrane. These strategies allow the construction of membrane structures by direct transfer of the lipid mixture to the substrate, without requiring previous substrate functionalization, in contrast to other molecular inks, where structure is directly determined by the printing process itself. The patterns are demonstrated to be viable for subsequent protein binding, therefore adding to a flexible feature library when gradients of protein presentation are desired.
Collapse
Affiliation(s)
- Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe, Germany
- Physical Institute and Center for Nanotechnology (CeNTech), University of Münster , 48149 Münster, Germany
| | - Ainhoa Urtizberea
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe, Germany
| | - Souvik Ghosh
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe, Germany
- Sardar Vallabhbhai National Institute of Technology (SVNIT) , Surat, Gujarat 395007, India
| | - Uwe Bog
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe, Germany
| | - Quinn Rainer
- Florida State Univ , Dept Biol Sci and Integrat NanoSci Inst, Tallahassee, Florida 32306 United States
| | - Steven Lenhert
- Florida State Univ , Dept Biol Sci and Integrat NanoSci Inst, Tallahassee, Florida 32306 United States
| | - Harald Fuchs
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe, Germany
- Physical Institute and Center for Nanotechnology (CeNTech), University of Münster , 48149 Münster, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Bog U, de Los Santos Pereira A, Mueller SL, Havenridge S, Parrillo V, Bruns M, Holmes AE, Rodriguez-Emmenegger C, Fuchs H, Hirtz M. Clickable Antifouling Polymer Brushes for Polymer Pen Lithography. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12109-12117. [PMID: 28296390 DOI: 10.1021/acsami.7b01184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protein-repellent reactive surfaces that promote localized specific binding are highly desirable for applications in the biomedical field. Nonspecific adhesion will compromise the function of bioactive surfaces, leading to ambiguous results of binding assays and negating the binding specificity of patterned cell-adhesive motives. Localized specific binding is often achieved by attaching a linker to the surface, and the other side of the linker is used to bind specifically to a desired functional agent, as e.g. proteins, antibodies, and fluorophores, depending on the function required by the application. We present a protein-repellent polymer brush enabling highly specific covalent surface immobilization of biorecognition elements by strain-promoted alkyne-azide cycloaddition click chemistry for selective protein adhesion. The protein-repellent polymer brush is functionalized by highly localized molecular binding sites in the low micrometer range using polymer pen lithography (PPL). Because of the massive parallelization of writing pens, the tunable PPL printed patterns can span over square centimeter areas. The selective binding of the protein streptavidin to these surface sites is demonstrated while the remaining polymer brush surface is resisting nonspecific adsorption without any prior blocking by bovine serum albumin (BSA). In contrast to the widely used BSA blocking, the reactive polymer brushes are able to significantly reduce nonspecific protein adsorption, which is the cause of biofouling. This was achieved for solutions of single proteins as well as complex biological fluids. The remarkable fouling resistance of the polymer brushes has the potential to improve the multiplexing capabilities of protein probes and therefore impact biomedical research and applications.
Collapse
Affiliation(s)
| | - Andres de Los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry ASCR , v.v.i., Prague, Czech Republic
| | - Summer L Mueller
- Department of Chemistry, Doane University, Crete, Nebraska, and the Center for Nanohybrid Functional Materials (CNFM), University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Shana Havenridge
- Department of Chemistry, Doane University, Crete, Nebraska, and the Center for Nanohybrid Functional Materials (CNFM), University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Viviana Parrillo
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry ASCR , v.v.i., Prague, Czech Republic
| | | | - Andrea E Holmes
- Department of Chemistry, Doane University, Crete, Nebraska, and the Center for Nanohybrid Functional Materials (CNFM), University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Cesar Rodriguez-Emmenegger
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Aachen, Germany
| | - Harald Fuchs
- Physical Institute & Center for Nanotechnology (CeNTech), University of Münster , Münster, Germany
| | | |
Collapse
|