1
|
Akbari K, Nori F, Hughes S. Floquet Engineering the Quantum Rabi Model in the Ultrastrong Coupling Regime. PHYSICAL REVIEW LETTERS 2025; 134:063602. [PMID: 40021156 DOI: 10.1103/physrevlett.134.063602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/31/2024] [Accepted: 01/09/2025] [Indexed: 03/03/2025]
Abstract
We study the quantum Rabi model for a two-level system coupled to a quantized cavity mode under periodic modulation of the cavity-dipole coupling in the ultrastrong coupling regime, leading to rich Floquet states. Exploiting the quantum vacuum, we show how purely mechanical driving can produce real photons, depending on the strength and frequency of the periodic coupling rate. This scheme is promising for the coherent manipulation of hybrid quantum systems and quantum vacuum effects, with potential applications for quantum state engineering, quantum information processing, and the study of nonequilibrium quantum phenomena.
Collapse
Affiliation(s)
- Kamran Akbari
- Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, Ontario K7L 3N6, Canada
| | - Franco Nori
- RIKEN, Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RiKEN, Wakoshi, Saitama, 351-0198, Japan
- The University of Michigan, Physics Department, Ann Arbor, Michigan 48109-1040, USA
| | - Stephen Hughes
- Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Lednev M, García-Vidal FJ, Feist J. Lindblad Master Equation Capable of Describing Hybrid Quantum Systems in the Ultrastrong Coupling Regime. PHYSICAL REVIEW LETTERS 2024; 132:106902. [PMID: 38518335 DOI: 10.1103/physrevlett.132.106902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 02/02/2024] [Indexed: 03/24/2024]
Abstract
Despite significant theoretical efforts devoted to studying the interaction between quantized light modes and matter, the so-called ultrastrong coupling regime still presents significant challenges for theoretical treatments and prevents the use of many common approximations. Here we demonstrate an approach that can describe the dynamics of hybrid quantum systems in any regime of interaction for an arbitrary electromagnetic (EM) environment. We extend a previous method developed for few-mode quantization of arbitrary systems to the case of ultrastrong light-matter coupling, and show that even such systems can be treated using a Lindblad master equation where decay operators act only on the photonic modes by ensuring that the effective spectral density of the EM environment is sufficiently suppressed at negative frequencies. We demonstrate the validity of our framework and show that it outperforms current state-of-the-art master equations for a simple model system, and then study a realistic nanoplasmonic setup where existing approaches cannot be applied.
Collapse
Affiliation(s)
- Maksim Lednev
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Francisco J García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Republic of Singapore
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
3
|
Davidsson E, Kowalewski M. The role of dephasing for dark state coupling in a molecular Tavis-Cummings model. J Chem Phys 2023; 159:044306. [PMID: 37493131 PMCID: PMC7615654 DOI: 10.1063/5.0155302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
The collective coupling of an ensemble of molecules to a light field is commonly described by the Tavis-Cummings model. This model includes numerous eigenstates that are optically decoupled from the optically bright polariton states. Accessing these dark states requires breaking the symmetry in the corresponding Hamiltonian. In this paper, we investigate the influence of non-unitary processes on the dark state dynamics in the molecular Tavis-Cummings model. The system is modeled with a Lindblad equation that includes pure dephasing, as it would be caused by weak interactions with an environment, and photon decay. Our simulations show that the rate of pure dephasing, as well as the number of two-level systems, has a significant influence on the dark state population.
Collapse
Affiliation(s)
- Eric Davidsson
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Lentrodt D, Diekmann O, Keitel CH, Rotter S, Evers J. Certifying Multimode Light-Matter Interaction in Lossy Resonators. PHYSICAL REVIEW LETTERS 2023; 130:263602. [PMID: 37450811 DOI: 10.1103/physrevlett.130.263602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 07/21/2022] [Accepted: 05/19/2023] [Indexed: 07/18/2023]
Abstract
Quantum models based on few-mode master equations have been a central tool in the study of resonator quantum electrodynamics, extending the seminal single-mode Jaynes-Cummings model to include loss and multiple modes. Despite their broad application range, previous approaches within this framework have either relied on a Markov approximation or a fitting procedure. By combining ideas from pseudomode and quasinormal mode theory, we develop a certification criterion for multi-mode effects in lossy resonators. It is based on a witness observable, and neither requires a fitting procedure nor a Markov approximation. Using the resulting criterion, we demonstrate that such multi-mode effects are important for understanding previous experiments in x-ray cavity QED with Mössbauer nuclei and that they allow one to tune the nuclear ensemble properties.
Collapse
Affiliation(s)
- Dominik Lentrodt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Oliver Diekmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Institute for Theoretical Physics, Vienna University of Technology (TU Wien), 1040 Vienna, Austria
| | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Stefan Rotter
- Institute for Theoretical Physics, Vienna University of Technology (TU Wien), 1040 Vienna, Austria
| | - Jörg Evers
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
5
|
Salmon W, Gustin C, Settineri A, Di Stefano O, Zueco D, Savasta S, Nori F, Hughes S. Erratum to: Gauge-independent emission spectra and quantum correlations in the ultrastrong coupling regime of open system cavity-QED. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:165-166. [PMID: 39633640 PMCID: PMC11614348 DOI: 10.1515/nanoph-2022-0795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
[This corrects the article DOI: 10.1515/nanoph-2021-0718.].
Collapse
Affiliation(s)
- Will Salmon
- Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Chris Gustin
- Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Applied Physics, Stanford University, Stanford, CA94305, USA
| | - Alessio Settineri
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166Messina, Italy
| | - Omar Di Stefano
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166Messina, Italy
| | - David Zueco
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009Zaragoza, Spain
- Fundación ARAID, Campus Río Ebro, 50018Zaragoza, Spain
| | - Salvatore Savasta
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166Messina, Italy
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama351-0198, Japan
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama351-0198, Japan
- Physics Department, The University of MI, Ann Arbor, MI48109-1040, USA
| | - Stephen Hughes
- Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
6
|
Macrì V, Mercurio A, Nori F, Savasta S, Sánchez Muñoz C. Spontaneous Scattering of Raman Photons from Cavity-QED Systems in the Ultrastrong Coupling Regime. PHYSICAL REVIEW LETTERS 2022; 129:273602. [PMID: 36638299 DOI: 10.1103/physrevlett.129.273602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
We show that spontaneous Raman scattering of incident radiation can be observed in cavity-QED systems without external enhancement or coupling to any vibrational degree of freedom. Raman scattering processes can be evidenced as resonances in the emission spectrum, which become clearly visible as the cavity-QED system approaches the ultrastrong coupling regime. We provide a quantum mechanical description of the effect, and show that ultrastrong light-matter coupling is a necessary condition for the observation of Raman scattering. This effect, and its strong sensitivity to the system parameters, opens new avenues for the characterization of cavity QED setups and the generation of quantum states of light.
Collapse
Affiliation(s)
- Vincenzo Macrì
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Alberto Mercurio
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166 Messina, Italy
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Salvatore Savasta
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166 Messina, Italy
| | - Carlos Sánchez Muñoz
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Sánchez-Barquilla M, García-Vidal FJ, Fernández-Domínguez AI, Feist J. Few-mode field quantization for multiple emitters. NANOPHOTONICS 2022; 11:4363-4374. [PMID: 36147197 PMCID: PMC9455278 DOI: 10.1515/nanoph-2021-0795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
The control of the interaction between quantum emitters using nanophotonic structures holds great promise for quantum technology applications, while its theoretical description for complex nanostructures is a highly demanding task as the electromagnetic (EM) modes form a high-dimensional continuum. We here introduce an approach that permits a quantized description of the full EM field through a small number of discrete modes. This extends the previous work in ref. (I. Medina, F. J. García-Vidal, A. I. Fernández-Domínguez, and J. Feist, "Few-mode field quantization of arbitrary electromagnetic spectral densities," Phys. Rev. Lett., vol. 126, p. 093601, 2021) to the case of an arbitrary number of emitters, without any restrictions on the emitter level structure or dipole operators. The low computational demand of this method makes it suitable for studying dynamics for a wide range of parameters. We illustrate the power of our approach for a system of three emitters placed within a hybrid metallodielectric photonic structure and show that excitation transfer is highly sensitive to the properties of the hybrid photonic-plasmonic modes.
Collapse
Affiliation(s)
- Mónica Sánchez-Barquilla
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Francisco J. García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), Connexis, 138632Singapore, Singapore
| | - Antonio I. Fernández-Domínguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| |
Collapse
|