Ding Q, Zhang R, Bao W, Xie P, Yue L, Shen S, Zhang H, Wang W. Tunable intrinsic strong light-matter coupling in transition metal dichalcogenide nanoresonators.
OPTICS LETTERS 2024;
49:3122-3125. [PMID:
38824343 DOI:
10.1364/ol.524391]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/12/2024] [Indexed: 06/03/2024]
Abstract
Self-hybridizing structures based on transition metal dichalcogenides (TMDCs) are becoming promising candidates for the study of an intrinsic strong light-matter coupling because of the efficient mode overlap with much simplified geometries. However, realizing flexible tuning of intrinsic strong coupling in such TMDC-based structures is still challenging. Here, we propose a strategy for flexible tuning of the intrinsic strong light-matter coupling based on a bulk TMDC material. We report the first demonstration of the strong coupling of intrinsic excitons to whispering gallery modes (WGMs) supported by an all-TMDC nanocavity. Importantly, by simply controlling angles of incidence, a selective excitation of WGMs and an anapole can be realized, which enables a direct modulation of self-hybridized interactions from a bright WGM-exciton coupling to a dark anapole-exciton coupling. Our work is expected to provide unique opportunities for engineering a strong light-matter coupling and to open exciting avenues for highly integrated novel nanophotonic devices.
Collapse