1
|
Almoammar S, Alnazeh AA, Kamran MA, Al Jearah MM, Qasim M, Abdulla AM. Photoactivated riboflavin-doped hydroxy apatite nanospheres infiltered in orthodontic adhesives. Microsc Res Tech 2025; 88:213-223. [PMID: 39267424 DOI: 10.1002/jemt.24687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024]
Abstract
To assess micro-tensile bond strength (μTBS), degree of conversion (DC), microleakage (ML) antibacterial efficacy, and adhesive remnant index (ARI) of orthodontic brackets to enamel with different concentrations of photoactivated riboflavin-doped hydroxyapatite (HA) nanospheres (NS) (0%,1%,5% and 10%) and 0.5 wt% RF alone in orthodontic adhesive. Samples were included on the predefined inclusion criteria and positioned up to the cementoenamel junction (CEJ). Hydroxy apatite nanospheres (HANS) commercially bought were doped with RF. Surface characterization of HANS and RF-doped HANS were assessed along with EDX analysis. Samples were grouped based on experimental orthodontic adhesive modification. Group 1: Transbond XT no modification, Group 2: experimental Transbond XT 0.5 wt% RF, Group 3: experimental Transbond XT 0.5 wt% RF-doped 1% HANS, Group 4: experimental Transbond XT 0.5 wt % RF-doped 5% HANS and Group 5: Experimental Transbond XT 0.5 wt% RF-doped 10% HANS. Brackets were placed based on different adhesive modifications and samples underwent thermocycling. Samples were evaluated for μTBS, DC, and ML. The type of failure was assessed using ARI. Adhesive modified and un-modified in four different concentrations (0%, 1%, 5%, and 10%) and 0.5 wt% RF only were used to test efficacy against Streptococcus mutans (S.mutans). The survival rate of S.mutans and ML was determined using the Kruskal-Wallis Test. For the analysis of μTBS, ANOVA was employed, followed by a post-hoc Tukey HSD multiple comparisons test. The highest μTBS and lowest ML were observed in Group 2 experimental Transbond XT 0.5 wt% RF only. The lowest μTBS, highest ML, and lowest DC was seen in Group 5 experimental Transbond XT 0.5 wt% RF-doped 10% HANS. Samples in Group 1 in which Transbond XT was used as adhesive demonstrated significantly the highest microbial count of S.mutans and DC. Photoactivated RF-doped HANS in 1% and 0.5 wt% Riboflavin alone in orthodontic adhesive for metallic bracket bonding improved micro tensile bond strength, ML, DC, and antibacterial scores. RESEARCH HIGHLIGHTS: The highest μTBS and lowest ML were observed in Group 2 experimental Transbond XT 0.5 wt% RF only. The lowest μTBS, highest ML, and lowest DC was seen in Group 5 experimental Transbond XT 0.5 wt% RF-doped 10% HA-NS. Samples in Group 1 in which Transbond XT was used as adhesive demonstrated significantly the highest microbial count of S.mutans and DC.
Collapse
Affiliation(s)
- Salem Almoammar
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Abdullah A Alnazeh
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Muhammad Abdullah Kamran
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | | | - Muhammad Qasim
- Department Operative Dentistry and Endodontics, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Anshad M Abdulla
- Department of Pediatric Dentistry Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Liu J, Qi J, Li J, Zhang T, Ren J, Zhang Z, Ning X, Zhang R, Liu X, Li B, Wu X. Antimicrobial and Remineralization of Carboxymethyl Chitosan and Xylitol Functionalized Carbon Dots Coating on Orthodontic Brackets. Int J Nanomedicine 2024; 19:13823-13838. [PMID: 39735325 PMCID: PMC11681276 DOI: 10.2147/ijn.s495706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets. Methods Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S. mutans in vitro and in vivo. The composite coating was then adhered to the brackets. After the characterization measurements, antibacterial properties against S. mutans and the ability to promote remineralization of isolated teeth were investigated. Results Biological studies demonstrated that L929 cells co-cultured with CMC-Xy-CDs did not observe significant cytotoxicity and CMC-Xy-CDs have good biocompatibility. In the adhesive action of PDA, various characterizations have proved that CDs are modified on the brackets surface. In the antibacterial experiment, CMC-Xy-CDs and the adhesive coating on the brackets were found to have better antibacterial performance than the control group, with an antibacterial rate of up to 80%. In the animal experiment, the results of CMC-Xy-CDs promoting the healing of S. mutans infection wound models showed that there was a significant difference at 7d (P < 0.001), indicating that the experimental group had good antibacterial effects. The SEM of teeth after CMC-Xy-CDs promoted remineralization showed that the structure of the tooth surface became dense and some precipitation appeared, and the surface hardness measurement was significantly increased (p<0.0001). Conclusion Our study revealed that new nanocomposites with both antimicrobial and remineralization capabilities coated on orthodontic brackets provide a good basis for future clinical applications.
Collapse
Affiliation(s)
- Jinrong Liu
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Jin Qi
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Jiadi Li
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Tong Zhang
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Zheyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Xiao Ning
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People’s Republic of China
| |
Collapse
|
3
|
Aboayana M, Elgayar MI, Hussein MHA. Silver nanoparticles versus chitosan nanoparticles effects on demineralized enamel. BMC Oral Health 2024; 24:1282. [PMID: 39448952 PMCID: PMC11520134 DOI: 10.1186/s12903-024-04982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND To compare the impacts of different remineralizing agents on demineralized enamel, we focused on chitosan nanoparticles (ChiNPs) and silver nanoparticles (AgNPs). METHODS This study was conducted on 40 extracted human premolars with artificially induced demineralization using demineralizing solution. Prior to the beginning of the experimental procedures, the samples were preserved in artificial saliva solution. The nanoparticles were characterized by transmission electron microscopy (TEM) and teeth were divided into four equal groups: Group A was utilized as a control group (no demineralization) and received no treatment. Group B was subjected to demineralization with no treatment. Group C was subjected to demineralization and then treated with ChiNPs. Group D was subjected to demineralization and then treated with AgNPs. The teeth were evaluated for microhardness. The enamel surfaces of all the samples were analysed by scanning electron microscopy (SEM) for morphological changes and energy dispersive X-ray analysis (EDX) for elemental analysis. RESULTS The third and fourth groups had the highest mean microhardness and calcium (Ca) and phosphorous (P) contents. SEM of these two groups revealed relative restoration of homogenous remineralized enamel surface architecture with minimal micropores. CONCLUSION Chitosan nanoparticles (NPs) and silver NPs help restore the enamel surface architecture and mineral content. Therefore, chitosan NPs and AgNPs would be beneficial for remineralizing enamel.
Collapse
Affiliation(s)
- Mariam Aboayana
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Elmassalah, Alexandria, Egypt.
| | - Marihan I Elgayar
- Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mohamed H A Hussein
- Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
He L, Zhang W, Liu J, Pan Y, Li S, Xie Y. Applications of nanotechnology in orthodontics: a comprehensive review of tooth movement, antibacterial properties, friction reduction, and corrosion resistance. Biomed Eng Online 2024; 23:72. [PMID: 39054528 PMCID: PMC11270802 DOI: 10.1186/s12938-024-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Nanotechnology has contributed important innovations to medicine and dentistry, and has also offered various applications to the field of orthodontics. Intraoral appliances must function in a complex environment that includes digestive enzymes, a diverse microbiome, mechanical stress, and fluctuations of pH and temperature. Nanotechnology can improve the performance of orthodontic brackets and archwires by reducing friction, inhibiting bacterial growth and biofilm formation, optimizing tooth remineralization, improving corrosion resistance and biocompatibility of metal substrates, and accelerating or decelerating orthodontic tooth movement through the application of novel nanocoatings, nanoelectromechanical systems, and nanorobots. This comprehensive review systematically explores the orthodontic applications of nanotechnology, particularly its impacts on tooth movement, antibacterial activity, friction reduction, and corrosion resistance. A search across PubMed, the Web of Science Core Collection, and Google Scholar yielded 261 papers, of which 28 met our inclusion criteria. These selected studies highlight the significant benefits of nanotechnology in orthodontic devices. Recent clinical trials demonstrate that advancements brought by nanotechnology may facilitate the future delivery of more effective and comfortable orthodontic care.
Collapse
Affiliation(s)
- Longwen He
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Wenzhong Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Junfeng Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yuemei Pan
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yueqiang Xie
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China.
| |
Collapse
|
5
|
Hussein AH, Yassir YA. Graphene as a promising material in orthodontics: A review. J Orthod Sci 2024; 13:24. [PMID: 38784078 PMCID: PMC11114461 DOI: 10.4103/jos.jos_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 05/25/2024] Open
Abstract
Graphene is an extraordinary material with unique mechanical, chemical, and thermal properties. Additionally, it boasts high surface area and antimicrobial properties, making it an attractive option for researchers exploring innovative materials for biomedical applications. Although there have been various studies on graphene applications in different biomedical fields, limited reviews have been conducted on its use in dentistry, and no reviews have focused on its application in the orthodontic field. This review aims to present a comprehensive overview of graphene-based materials, with an emphasis on their antibacterial mechanisms and the factors that influence these properties. Additionally, the review summarizes the dental applications of graphene, spotlighting the studies of its orthodontic application as they can be used to enhance the antibacterial and mechanical properties of orthodontic materials such as adhesives, archwires, and splints. Also, they can be utilized to enhance bone remodeling during orthodontic tooth movement. An electronic search was carried out in Scopus, PubMed, Science Direct, and Wiley Online Library digital database platforms using graphene and orthodontics as keywords. The search was restricted to English language publications without a time limit. This review highlights the need for further laboratory and clinical research using graphene-based materials to improve the properties of orthodontic materials to make them available for clinical use.
Collapse
Affiliation(s)
- Afaf H. Hussein
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Yassir A. Yassir
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
- Department of Orthodontics, School of Dentistry, University of Dundee, UK
| |
Collapse
|
6
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
8
|
Sharma D, Kumar S, Garg Y, Chopra S, Bhatia A. Nanotechnology in Orthodontics: Unveiling Pain Mechanisms, Innovations, and Future Prospects of Nanomaterials in Drug Delivery. Curr Pharm Des 2024; 30:1490-1506. [PMID: 38644722 DOI: 10.2174/0113816128298451240404084605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Orthodontic pain is characterized by sensations of tingling, tooth discomfort, and intolerance. According to the oral health report, over forty percent of children and adolescents have undergone orthodontic treatment. The efficacy of orthodontic treatment involving braces can be compromised by the diverse levels of discomfort and suffering experienced by patients, leading to suboptimal treatment outcomes and reduced patient adherence. Nanotechnology has entered all areas of science and technology. This review provides an overview of nanoscience, its application in orthodontics, the underlying processes of orthodontic pain, effective treatment options, and a summary of recent research in Nano-dentistry. The uses of this technology in healthcare span a wide range, including enhanced diagnostics, biosensors, and targeted drug delivery. The reason for this is that nanomaterials possess distinct qualities that depend on their size, which can greatly enhance human well-being and contribute to better health when effectively utilized. The field of dentistry has also experienced significant advancements, particularly in the past decade, especially in the utilization of nanomaterials and technology. Over time, there has been an increase in the availability of dental nanomaterials, and a diverse array of these materials have been extensively studied for both commercial and therapeutic purposes.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
- Faculty of Pharmaceutical Sciences, The ICFAI University, Baddi, Himachal Pradesh 174103, India
| | - Shiv Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| |
Collapse
|
9
|
Anishya D, Jain RK. Vanillin-Mediated Green-Synthesised Silver Nanoparticles' Characterisation and Antimicrobial Activity: An In-Vitro Study. Cureus 2024; 16:e51659. [PMID: 38318582 PMCID: PMC10839412 DOI: 10.7759/cureus.51659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Background and aim Nanoparticles in general due to their enhanced antimicrobial effects and other beneficial effects are used in dentistry. Silver nanoparticles (AgNPs) have emerged as the metal nanoparticle with the most advantages among the many types. The objective of the study was to synthesise vanillin-mediated AgNPs, then characterise those nanoparticles and assess their antimicrobial effectiveness. Materials and methods One-step synthesis of stable and crystalline AgNPs was done with vanillin as the reducing and capping agent. After being crushed into powder form, the produced AgNPs were subjected to characterisation. A scanning electron Microscope SEM) analysis was done for morphological details of the AgNPs. SEM with energy dispersive X-ray spectroscopy analysis (EDAX) and Fourier transform infrared (FTIR) testing were done for elemental analysis. AgNPs' antimicrobial properties were tested using the agar well diffusion technique. Results The SEM analysis revealed that the synthesized AgNps were porous and agglomerative clusters and varied in sizes between 30-35 nm. SEM-EDAX revealed the presence of 76.2 weight (wt)% Ag, 4.9 wt% carbon, and 18.9 wt% of oxygen. FTIR prominent peaks were observed at 1431.97 cm and 1361.20 cm indicating the presence of AgNPs. Both low and high concentrations of AgNps showed good antimicrobial effects against Streptococcus mutans (S. mutans). Conclusion Vanillin can be successfully used as a reducing agent for creating AgNPs. Due to their effective antimicrobial activity against S.mutans at various concentrations, vanillin-mediated AgNPs can be used with dental materials to reduce the risk of dental caries and enamel demineralization.
Collapse
Affiliation(s)
- Daphane Anishya
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ravindra Kumar Jain
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
10
|
Taher BB, Rasheed TA. The Impact of Adding Chitosan Nanoparticles on Biofilm Formation, Cytotoxicity, and Certain Physical and Mechanical Aspects of Directly Printed Orthodontic Clear Aligners. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2649. [PMID: 37836290 PMCID: PMC10574519 DOI: 10.3390/nano13192649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Aligner treatment is associated with bacterial colonization, leading to enamel demineralization. Chitosan nanoparticles have been demonstrated to have antibacterial properties. This in vitro study aims to determine the effect of adding chitosan nanoparticles to directly 3D-printed clear aligner resin with regard to antibiofilm activity, cytotoxicity, degree of conversion, accuracy, deflection force, and tensile strength. Different concentrations (2%, 3%, and 5% w/w) of chitosan nanoparticles were mixed with the clear resin, and the samples were then 3D printed. Additionally, the thermoforming technique for aligner manufacturing was utilized. The obtained specimens were evaluated for antibiofilm activity against Streptococcus mutans bacteria and cytotoxicity against L929 and 3T3 cell lines. Additionally, Fourier transform infrared spectroscopy via attenuated total reflection analysis was used to assess the degree of conversion. Geomagic Control X software was utilized to analyze the accuracy. In addition, the deflection force and tensile strength were evaluated. The results indicated a notable reduction in bacterial colonies when the resin was incorporated with 3 and 5% chitosan nanoparticles. No significant changes in the cytotoxicity or accuracy were detected. In conclusion, integrating biocompatible chitosan nanoparticles into the resin can add an antibiofilm element to an aligner without compromising the material's certain biological, mechanical, and physical qualities at specific concentrations.
Collapse
Affiliation(s)
- Botan Barzan Taher
- Department of Pedodontics, Orthodontics and Preventive Dentistry, College of Dentistry, University of Sulaimani, Sulaymaniyah 46001, Iraq;
| | - Tara Ali Rasheed
- Department of Pedodontics, Orthodontics and Preventive Dentistry, College of Dentistry, University of Sulaimani, Sulaymaniyah 46001, Iraq;
- College of Dentistry, American University of Iraq-Sulaimani, Sulaymaniyah 46001, Iraq
| |
Collapse
|
11
|
Wang N, Yu J, Yan J, Hua F. Recent advances in antibacterial coatings for orthodontic appliances. Front Bioeng Biotechnol 2023; 11:1093926. [PMID: 36815889 PMCID: PMC9931068 DOI: 10.3389/fbioe.2023.1093926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
In the process of orthodontic treatment, the presence of orthodontic appliances makes it difficult to clean tooth surfaces. This can lead to an increased level of bacterial colonization, resulting in enamel demineralization and periodontal diseases. Considering the large surface area that orthodontic appliances usually have and that they can be in direct contact with bacteria throughout the treatment, modifications in the form of coatings on the surface of orthodontic appliances can be an effective and practical approach to reducing bacterial proliferation and preventing relevant adverse effects. In this mini-review, we discuss various antibacterial coatings which have been applied onto orthodontic appliances in recent 5 years, as well as their antibacterial mechanisms and methods for the preparation of these coatings. From this mini-review, both orthodontists and researchers can get the latest findings in the field of antibacterial coatings onto orthodontic appliances, which is helpful for the decision-making in clinical practice and research activities.
Collapse
Affiliation(s)
- Nannan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiarong Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China,Center for Orthodontics and Pediatric Dentistry at Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan, China,Center for Evidence-Based Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China,Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom,*Correspondence: Fang Hua,
| |
Collapse
|
12
|
Padmanabhan DS. Nanotechnology in Orthodontics. Semin Orthod 2023. [DOI: 10.1053/j.sodo.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|