1
|
Biswas B, Siddiqui AI, Majee MC, Saha SK, Mondal B, Saha R, Gómez García CJ. Heptanuclear Mixed-Valence Co 4IIICo 3II Molecular Wheel─A Molecular Analogue of Layered Double Hydroxides with Single-Molecule Magnet Behavior and Electrocatalytic Activity for Hydrogen Evolution Reactions. Inorg Chem 2024; 63:6161-6172. [PMID: 38526851 PMCID: PMC11005049 DOI: 10.1021/acs.inorgchem.3c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
We present a bifunctional heptanuclear cobalt(II)/cobalt(III) molecular complex formulated as [Co7(μ3-OH)4(H2L1)2(HL2)2](NO3)6·6H2O (1) (where H5L1 is 2,2'-(((1E,1'E)-((2-hydroxy-5-methyl-1,3-phenylene)bis(methanylylidene))bis(azanylylidene))bis(propane-1,3-diol)) and H2L2 is 2-amino-1,3-propanediol). Compound 1 has been characterized by single-crystal X-ray diffraction analysis along with other spectral and magnetic measurements. Structural analysis indicates that 1 contains a mixed-valence Co7 cluster where a central Co(II) ion is connected to six different Co centers (four CoIII and two CoII ions) by four μ3-OH groups, giving rise to a planar heptanuclear cluster that resembles a molecular fragment of a layered double hydroxide (LDH). Two triply deprotonated (H2L1)3- ligands form the outer side of the cluster while two singly deprotonated (HL2)- ligands are located at the top and bottom of the central heptanuclear core. Variable temperature magnetic measurements indicate the presence of weak ferromagnetic CoII···CoII interactions (J = 3.53(6) cm-1) within the linear trinuclear CoII cluster. AC susceptibility measurements show that 1 is a field-induced single-molecule magnet (SMM) with τ0 = 8.2(7) × 10-7 s and Ueff = 11.3(4) K. The electrocatalytic hydrogen evolution reaction (HER) activity of 1 in homogeneous phase shows an overpotential of 455 mV, with a Faradaic efficiency of 81% and a TOF of 8.97 × 104 μmol H2 h-1 mol-1.
Collapse
Affiliation(s)
- Biplab Biswas
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Department
of Chemistry, Hooghly Mohsin College, Chinsurah 712101, West Bengal, India
| | | | | | - Swadhin Kumar Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Biswajit Mondal
- Department
of Chemistry, IIT Gandhinagar, Palaj 382355, Gujarat, India
| | - Rajat Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| |
Collapse
|
2
|
Khariushin IV, Ovsyannikov AS, Islamov DR, Samigullina AI, Solovieva SE, Zakrzewski JJ, Chorazy S, Ferlay S. Tuning Crystal Packing and Magnetic Properties in a Series of [Dy 12] Metallocubanes Based on Azobenzene Derivatives of Salicylic Acid. Inorg Chem 2023. [PMID: 37377140 DOI: 10.1021/acs.inorgchem.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A series of four new Dy12 dodecanuclear clusters based on azobenzene derivative ligands of salicylic acid (L1-L4) has been synthesized and characterized in the crystalline phase using X-ray diffraction on single crystal and powder, IR spectroscopy, elemental analysis, and DSC-TGA methods. It was revealed that all obtained clusters exhibit the formation of the similar metallic cluster nodes, as vertex-sharing heterocubanes, obtained from four Dy3+ cations, three bridging hydroxyl groups, and O atoms from the salicylic ligands. The coordination geometry around the Dy(III) centers has been carefully analyzed. Whereas Dy12-L1 and Dy12-L2 with L1 and L2 containing Me and OMe groups in para positions of the phenyl rings, respectively, form similar porous 3D diamond-like molecular networks due to CH-π interactions, for Dy12-L3 with L3 bearing NO2-electron-withdrawing group, the generation of 2D molecular grids assembled by π-π staking is observed, and for Dy12-L4 with L4 bearing phenyl substituent, 3D hexagonal channels have been generated. The complexes Dy12-L1, Dy12-L2, and Dy12-L3 exhibit a zero-field slow magnetic relaxation effect. After UV irradiation of Dy12-L1, a decrease of the magnetic anisotropy energy barrier displaying the possibility of control over magnetic properties by the external stimulus has been observed.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Daut R Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Aida I Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Svetlana E Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| |
Collapse
|
3
|
Georgopoulou A, Pissas M, Psycharis V, Sanakis Y, Raptopoulou CP. A single-chain magnet based on bis(end-on azido/alkoxo)-bridged linear [MnIII2MnII] repeating units. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Thomas-Hargreaves LR, Giansiracusa MJ, Gregson M, Zanda E, O'Donnell F, Wooles AJ, Chilton NF, Liddle ST. Correlating axial and equatorial ligand field effects to the single-molecule magnet performances of a family of dysprosium bis-methanediide complexes. Chem Sci 2021; 12:3911-3920. [PMID: 34163660 PMCID: PMC8179472 DOI: 10.1039/d1sc00238d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Treatment of the new methanediide-methanide complex [Dy(SCS)(SCSH)(THF)] (1Dy, SCS = {C(PPh2S)2}2-) with alkali metal alkyls and auxillary ethers produces the bis-methanediide complexes [Dy(SCS)2][Dy(SCS)2(K(DME)2)2] (2Dy), [Dy(SCS)2][Na(DME)3] (3Dy) and [Dy(SCS)2][K(2,2,2-cryptand)] (4Dy). For further comparisons, the bis-methanediide complex [Dy(NCN)2][K(DB18C6)(THF)(toluene)] (5Dy, NCN = {C(PPh2NSiMe3)2}2-, DB18C6 = dibenzo-18-crown-6 ether) was prepared. Magnetic susceptibility experiments reveal slow relaxation of the magnetisation for 2Dy-5Dy, with open magnetic hysteresis up to 14, 12, 15, and 12 K, respectively (∼14 Oe s-1). Fitting the alternating current magnetic susceptibility data for 2Dy-5Dy gives energy barriers to magnetic relaxation (U eff) of 1069(129)/1160(21), 1015(32), 1109(70), and 757(39) K, respectively, thus 2Dy-4Dy join a privileged group of SMMs with U eff values of ∼1000 K and greater with magnetic hysteresis at temperatures >10 K. These structurally similar Dy-components permit systematic correlation of the effects of axial and equatorial ligand fields on single-molecule magnet performance. For 2Dy-4Dy, the Dy-components can be grouped into 2Dy-cation/4Dy and 2Dy-anion/3Dy, where the former have almost linear C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with short average Dy[double bond, length as m-dash]C distances, and the latter have more bent C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with longer average Dy[double bond, length as m-dash]C bonds. Both U eff and hysteresis temperature are superior for the former pair compared to the latter pair as predicted, supporting the hypothesis that a more linear axial ligand field with shorter M-L distances produces enhanced SMM properties. Comparison with 5Dy demonstrates unusually clear-cut examples of: (i) weakening the equatorial ligand field results in enhancement of the SMM performance of a monometallic system; (ii) a positive correlation between U eff barrier and axial linearity in structurally comparable systems.
Collapse
Affiliation(s)
| | - Marcus J Giansiracusa
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Emanuele Zanda
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Felix O'Donnell
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
5
|
Sanakis Y, Krzystek J, Maganas D, Grigoropoulos A, Ferentinos E, Kostakis MG, Petroulea V, Pissas M, Thirunavukkuarasu K, Wernsdorfer W, Neese F, Kyritsis P. Magnetic Properties and Electronic Structure of the S = 2 Complex [Mn III{(OPPh 2) 2N} 3] Showing Field-Induced Slow Magnetization Relaxation. Inorg Chem 2020; 59:13281-13294. [PMID: 32897702 DOI: 10.1021/acs.inorgchem.0c01636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The high-spin S = 2 Mn(III) complex [Mn{(OPPh2)2N}3] (1Mn) exhibits field-induced slow relaxation of magnetization (Inorg. Chem. 2013, 52, 12869). Magnetic susceptibility and dual-mode X-band electron paramagnetic resonance (EPR) studies revealed a negative value of the zero-field-splitting (zfs) parameter D. In order to explore the magnetic and electronic properties of 1Mn in detail, a combination of experimental and computational studies is presented herein. Alternating-current magnetometry on magnetically diluted samples (1Mn/1Ga) of 1Mn in the diamagnetic gallium analogue, [Ga{(OPPh2)2N}3], indicates that the slow relaxation behavior of 1Mn is due to the intrinsic properties of the individual molecules of 1Mn. Investigation of the single-crystal magnetization of both 1Mn and 1Mn/1Ga by a micro-SQUID device reveals hysteresis loops below 1 K. Closed hysteresis loops at a zero direct-current magnetic field are observed and attributed to fast quantum tunneling of magnetization. High-frequency and -field EPR (HFEPR) spectroscopic studies reveal that, apart from the second-order zfs terms (D and E), fourth-order terms (B4m) are required in order to appropriately describe the magnetic properties of 1Mn. These studies provide accurate spin-Hamiltonian (sH) parameters of 1Mn, i.e., zfs parameters |D| = 3.917(5) cm-1, |E| = 0.018(4) cm-1, B04 = B42 = 0, and B44 = (3.6 ± 1.7) × 10-3 cm-1 and g = [1.994(5), 1.996(4), 1.985(4)], and confirm the negative sign of D. Parallel-mode X-band EPR studies on 1Mn/1Ga and CH2Cl2 solutions of 1Mn probe the electronic-nuclear hyperfine interactions in the solid state and solution. The electronic structure of 1Mn is investigated by quantum-chemical calculations by employing recently developed computational protocols that are grounded on ab initio wave function theory. From computational analysis, the contributions of spin-spin and spin-orbit coupling to the magnitude of D are obtained. The calculations provide also computed values of the fourth-order zfs terms B4m, as well as those of the g and hyperfine interaction tensor components. In all cases, a very good agreement between the computed and experimentally determined sH parameters is observed. The magnetization relaxation properties of 1Mn are rationalized on the basis of the composition of the ground-state wave functions in the absence or presence of an external magnetic field.
Collapse
Affiliation(s)
- Yiannis Sanakis
- Institute of Nanoscience and Nanotechnolgy, National Centre of Scientific Research "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexios Grigoropoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Marios G Kostakis
- Analytical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens,15771 Athens, Greece
| | - Vasiliki Petroulea
- Institute of Nanoscience and Nanotechnolgy, National Centre of Scientific Research "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
| | - Michael Pissas
- Institute of Nanoscience and Nanotechnolgy, National Centre of Scientific Research "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
| | | | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.,Institute of Quantum Materials and Technologies, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
6
|
Monakhov KY, Wernsdorfer W. A cubane-type nickel single-molecule magnet with exchange-biased quantum tunneling of magnetization. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
A Series of Field-Induced Single-Ion Magnets Based on the Seven-Coordinate Co(II) Complexes with the Pentadentate (N3O2) H2dapsc Ligand. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5040058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of five new mononuclear pentagonal bipyramidal Co(II) complexes with the equatorial 2,6-diacetylpyridine bis(semicarbazone) ligand (H2dapsc) and various axial pseudohalide ligands (SCN, SeCN, N(CN)2, C(CN)3, and N3) was prepared and structurally characterizated: [Co(H2dapsc)(SCN)2]∙0.5C2H5OH (1), [Co(H2dapsc)(SeCN)2]∙0.5C2H5OH (2), [Co(H2dapsc)(N(CN)2)2]∙2H2O (3), [Co(H2dapsc)(C(CN)3)(H2O)](NO3)∙1.16H2O (4), and {[Co(H2dapsc)(H2O)(N3)][Co(H2dapsc)(N3)2]}N3∙4H2O (5). The combined analyses of the experimental DС and AC magnetic data of the complexes (1–5) and two other earlier described those of this family [Co(H2dapsc)(H2O)2)](NO3)2∙2H2O (6) and [Co(H2dapsc)(Cl)(H2O)]Cl∙2H2O (7), their theoretical description and the ab initio CASSCF/NEVPT2 calculations reveal large easy-plane magnetic anisotropies for all complexes (D = + 35 − 40 cm‒1). All complexes under consideration demonstrate slow magnetic relaxation with dominant Raman and direct spin–phonon processes at static magnetic field and so they belong to the class of field-induced single-ion magnets (SIMs).
Collapse
|
8
|
Han H, Wei Z, Barry MC, Carozza JC, Alkan M, Rogachev AY, Filatov AS, Abakumov AM, Dikarev EV. A three body problem: a genuine hetero trimetallic molecule vs. a mixture of two parent hetero bimetallic molecules. Chem Sci 2018; 9:4736-4745. [PMID: 29910924 PMCID: PMC5982224 DOI: 10.1039/c8sc00917a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/05/2018] [Indexed: 12/23/2022] Open
Abstract
Tetranuclear molecular precursor Li2CoNiL6 for oxide cathode materials has been shown to contain heterotrimetallic and both parent heterobimetallic molecules.
This work raises a fundamental question about the “real” structure of molecular compounds containing three different metals: whether they consist of genuine heterotrimetallic species or of a mixture of parent heterobimetallic species. Heterotrimetallic complex Li2CoNi(tbaoac)6 (1, tbaoac = tert-butyl acetoacetate) has been designed based on the model tetranuclear structure featuring two transition metal sites in order to be utilized as a molecular precursor for the low-temperature preparation of the LiCo0.5Ni0.5O2 battery cathode material. An investigation of the structure of 1 appeared to be very challenging, since the Co and Ni atoms have very similar atomic numbers, monoisotopic masses, and radii as well as the same oxidation state and coordination number/environment. Using a statistical analysis of heavily overlaid isotope distribution patterns of the [Li2MM′L5]+ (M/M′ = Co2, Ni2, and CoNi) ions in DART mass spectra, it was concluded that the reaction product 1 contains both heterotrimetallic and bimetallic species. A structural analogue approach has been applied to obtain Li2MMg(tbaoac)6 (M = Co (2) and Ni (3)) complexes that contain lighter, diamagnetic magnesium in the place of one of the 3d transition metals. X-ray crystallography, mass spectrometry, and NMR spectroscopy unambiguously confirmed the presence of three types of molecules in the reaction mixture that reaches an equilibrium, Li2M2L6 + Li2Mg2L6 ↔ 2Li2MMgL6, upon prolonged reflux in solution. The equilibrium mixture was shown to have a nearly statistical distribution of the three molecules, and this is fully supported by the results of theoretical calculations revealing that the stabilization energies of heterotrimetallic assemblies fall exactly in between those for the parent heterobimetallic species. The LiCo0.5Ni0.5O2 quaternary oxide has been obtained in its phase-pure form by thermal decomposition of heterometallic precursor 1 at temperatures as low as 450 °C. Its chemical composition, structure, morphology, and transition metal distribution have been studied by X-ray and electron diffraction techniques and compositional energy-dispersive X-ray mapping with nanometer resolution. The work clearly illustrates the advantages of heterometallic single-source precursors over the corresponding multi-source precursors.
Collapse
Affiliation(s)
- Haixiang Han
- Department of Chemistry , University at Albany , SUNY , Albany , NY 12222 , USA .
| | - Zheng Wei
- Department of Chemistry , University at Albany , SUNY , Albany , NY 12222 , USA .
| | - Matthew C Barry
- Department of Chemistry , University at Albany , SUNY , Albany , NY 12222 , USA .
| | - Jesse C Carozza
- Department of Chemistry , University at Albany , SUNY , Albany , NY 12222 , USA .
| | - Melisa Alkan
- Department of Chemistry , Illinois Institute of Technology , Chicago , IL 60616 , USA
| | - Andrey Yu Rogachev
- Department of Chemistry , Illinois Institute of Technology , Chicago , IL 60616 , USA
| | | | - Artem M Abakumov
- Center for Electrochemical Energy Storage , Skolkovo Institute of Science and Technology , Moscow 143026 , Russia
| | - Evgeny V Dikarev
- Department of Chemistry , University at Albany , SUNY , Albany , NY 12222 , USA .
| |
Collapse
|
9
|
Gorczyński A, Marcinkowski D, Kubicki M, Löffler M, Korabik M, Karbowiak M, Wiśniewski P, Rudowicz C, Patroniak V. New field-induced single ion magnets based on prolate Er(iii) and Yb(iii) ions: tuning the energy barrierUeffby the choice of counterions within an N3-tridentate Schiff-base scaffold. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00727b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counterions modulate the structure and magnetic properties of rarely observed high-coordinate SIM species.
Collapse
Affiliation(s)
- Adam Gorczyński
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
| | | | - Maciej Kubicki
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
| | - Marta Löffler
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Maria Korabik
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Piotr Wiśniewski
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-422 Wrocław
- Poland
| | - Czesław Rudowicz
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
| | | |
Collapse
|
10
|
Gupta T, Singh MK, Rajaraman G. Role of Ab Initio Calculations in the Design and Development of Lanthanide Based Single Molecule Magnets. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|