1
|
Konev DV, Zader PA, Vorotyntsev MA. Evolution of the Bromate Electrolyte Composition in the Course of Its Electroreduction inside a Membrane-Electrode Assembly with a Proton-Exchange Membrane. Int J Mol Sci 2023; 24:15297. [PMID: 37894976 PMCID: PMC10607049 DOI: 10.3390/ijms242015297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The passage of cathodic current through the acidized aqueous bromate solution (catholyte) leads to a negative shift of the average oxidation degree of Br atoms. It means a distribution of Br-containing species in various oxidation states between -1 and +5, which are mutually transformed via numerous protonation/deprotonation, chemical, and redox/electrochemical steps. This process is also accompanied by the change in the proton (H+) concentration, both due to the participation of H+ ions in these steps and due to the H+ flux through the cation-exchange membrane separating the cathodic and anodic compartments. Variations of the composition of the catholyte concentrations of all these components has been analyzed for various initial concentrations of sulfuric acid, cA0 (0.015-0.3 M), and two values of the total concentrations of Br atoms inside the system, ctot (0.1 or 1.0 M of Br atoms), as functions of the average Br-atom oxidation degree, x, under the condition of the thermodynamic equilibrium of the above transformations. It is shown that during the exhaustion of the redox capacity of the catholyte (x pass from 5 to -1), the pH value passes through a maximum. Its height and the corresponding average oxidation state of bromine atoms depend on the initial bromate/acid ratio. The constructed algorithm can be used to select the initial acid content in the bromate catholyte, which is optimal from the point of view of preventing the formation of liquid bromine at the maximum content of electroactive compounds.
Collapse
Affiliation(s)
- Dmitry V. Konev
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Pavel A. Zader
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail A. Vorotyntsev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
2
|
Kartashova NV, Konev DV, Loktionov PA, Glazkov AT, Goncharova OA, Petrov MM, Antipov AE, Vorotyntsev MA. A Hydrogen-Bromate Flow Battery as a Rechargeable Chemical Power Source. MEMBRANES 2022; 12:1228. [PMID: 36557135 PMCID: PMC9782483 DOI: 10.3390/membranes12121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The hydrogen-bromate flow battery represents one of the promising variants for hybrid power sources. Its membrane-electrode assembly (MEA) combines a hydrogen gas diffusion anode and a porous flow-through cathode where bromate reduction takes place from its acidized aqueous solution: BrO3− + 6 H+ + 6 e− = Br− + 3 H2O (*). The process of electric current generation occurs on the basis of the overall reaction: 3 H2 + BrO3− = Br− + 3 H2O (**), which has been studied in previous publications. Until this work, it has been unknown whether this device is able to function as a rechargeable power source. This means that the bromide anion, Br−, should be electrooxidized into the bromate anion, BrO3−, in the course of the charging stage inside the same cell under strongly acidic conditions, while until now this process has only been carried out in neutral or alkaline solutions with specially designed anode materials. In this study, we have demonstrated that processes (*) and (**) can be performed in a cyclic manner, i.e., as a series of charge and discharge stages with the use of MEA: H2, Freidenberg H23C8 Pt-C/GP-IEM 103/Sigracet 39AA, HBr + H2SO4; square cross-section of 4 cm2 surface area, under an alternating galvanostatic mode at a current density of 75 mA/cm2. The coulombic, voltaic and energy efficiencies of the flow battery under a cyclic regime, as well as the absorption spectra of the catholyte, were measured during its operation. The total amount of Br-containing compounds penetrating through the membrane into the anode space was also determined.
Collapse
Affiliation(s)
- Natalia V. Kartashova
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry V. Konev
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Pavel A. Loktionov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Artem T. Glazkov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Olga A. Goncharova
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Mikhail M. Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anatoly E. Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Mikhail A. Vorotyntsev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
3
|
Zader PA, Konev DV, Vorotyntsev MA. Theoretical Analysis of the pH Dependence of Evolution of the System Composition in the Course of Electrolysis of Acidic Aqueous Chloride Solutions. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Konev DV, Goncharova OA, Tolmachev YV, Vorotyntsev MA. The Role of Chlorine Dioxide in the Electroreduction of Chlorates at Low pH. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Vorotyntsev MA, Zader PA. Simulation of Mediator-Catalysis Process inside Redox Flow Battery. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Zader PA, Konev DV, Gun J, Lev O, Vorotyntsev MA. Theoretical Analysis of System’s Composition Changes in the Course of Electrolysis of Acidic Chloride Aqueous Solution. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522100123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Konev DV, Istakova OI, Ruban EA, Glazkov AT, Vorotyntsev MA. Hydrogen-Chlorate Electric Power Source: Feasibility of the Device, Discharge Characteristics and Modes of Operation. Molecules 2022; 27:molecules27175638. [PMID: 36080404 PMCID: PMC9457794 DOI: 10.3390/molecules27175638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
A power source based on the current-generating reaction of aqueous chlorate-to-chloride reduction by molecular hydrogen would provide as much as 1150 Wh per 1 L of reagent storage (for a combination of 700 atm compressed hydrogen and saturated aqueous solution of lithium chlorate) at room temperature, but direct electroreduction of chlorate only proceeds with unacceptably high overvoltages, even for the most catalytically active electrodes. In the present study, we experimentally demonstrated that this process can be performed via redox-mediator catalysis by intermediate products of chlorate reduction, owing to their participation in homogeneous com- and disproportionation reactions. A series of current–voltage and discharge characteristics were measured for hydrogen-chlorate membrane–electrode assembly (MEA) cells at various concentrations of chlorate and sulfuric acid under operando spectrophotometric monitoring of the electrolyte composition during the discharge. We established that chlorine dioxide (ClO2) is the key intermediate product; its fraction in the electrolyte solution increases progressively, up to its maximum, equal to 0.4–0.6 of the initial amount of chlorate anions, whereas the ClO2 amount decreases gradually to a zero value in the later stage. In most discharge experiments, the Faradaic yield exceeded 90% (maximal value: 99%), providing approximately 48% chemical energy storage-to-electricity conversion efficiency at maximal power of the discharge (max value: 402 mW/cm2). These results support prospect of a hydrogen-chlorate flow current generator as a highly specific energy-capacity source for airless media.
Collapse
Affiliation(s)
- Dmitry V. Konev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Correspondence: (D.V.K.); (M.A.V.)
| | - Olga I. Istakova
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Evgeny A. Ruban
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Artem T. Glazkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail A. Vorotyntsev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- Correspondence: (D.V.K.); (M.A.V.)
| |
Collapse
|
8
|
Modestov A, Kartashova N, Pichugov R, Petrov M, Antipov A, Abunaeva L. Bromine Crossover in Operando Analysis of Proton Exchange Membranes in Hydrogen-Bromate Flow Batteries. MEMBRANES 2022; 12:815. [PMID: 36005730 PMCID: PMC9416548 DOI: 10.3390/membranes12080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The manuscript deals with the fundamental problem of platinum hydrogen oxidation catalyst poisoning of the hybrid chemical power source based on bromate electroreduction and hydrogen electro-oxidation reactions. The poisoning is caused by the crossover of bromine-containing species through the proton exchange membrane separating compartments of the flow cell. Poisoning results in a drastic decrease in the flow cell performance. This paper describes the results of the direct measurement of bromine-containing species' crossover through perfluorosulfonic acid membranes of popular vendors in a hydrogen-bromate flow cell and proposes corresponding scenarios for the flow battery charge-discharge operation based on the electrolyte's control of the pH value. The rate of the crossover of the bromine-containing species through the membrane is found to be inversely proportional to the membrane thickness.
Collapse
Affiliation(s)
- Alexander Modestov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Natalia Kartashova
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Roman Pichugov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Mikhail Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anatoly Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Lilia Abunaeva
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
9
|
Halate electroreduction via autocatalytic mechanism for rotating disk electrode configuration: Evolution of concentrations and current after large-amplitude potential step. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Petrov MM, Modestov AD, Konev DV, Antipov AE, Loktionov PA, Pichugov RD, Kartashova NV, Glazkov AT, Abunaeva LZ, Andreev VN, Vorotyntsev MA. Redox flow batteries: role in modern electric power industry and comparative characteristics of the main types. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Devi MC, Pirabaharan P, Abukhaled M, Rajendran L. Analysis of the steady-state behavior of pseudo-first-order EC-catalytic mechanism at a rotating disk electrode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Vorotyntsev MA, Antipov AE. Bromate electroreduction in acidic solution inside rectangular channel under flow-through porous electrode conditions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Hydrogen-bromate flow battery: can one reach both high bromate utilization and specific power? J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04371-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Antipov AE, Vorotyntsev MA, Konev DV, Antipov EM. Bromate-Anion Electroreduction at Rotating Disc Electrode under Steady-State Conditions: Comparison of Numerical and Analytical Solutions for Convective Diffusion Equations in Excess of Protons. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519050033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Electrochemically driven evolution of Br-containing aqueous solution composition. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Goncharova OA, Glazkov AT, Lizgina KV, Piryazev AA, Koryakin SL, Konev DV, Vorotyntsev MA, Mintsev VB. Electroreduction of the Bromate Anion on a Microelectrode in Excess Acid: Solution of the Inverse Kinetic Problem. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Vorotyntsev M, Аntipov A. Novel procedure towards approximate analytical description of bromate-anion reduction at rotating disk electrode under steady-state transport conditions. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Modestov A, Konev D, Antipov A, Petrov M, Pichugov R, Vorotyntsev M. Bromate electroreduction from sulfuric acid solution at rotating disk electrode: Experimental study. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Konev DV, Antipov AE, Petrov MM, Shamraeva MA, Vorotyntsev MA. Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Vorotyntsev MA, Antipov AE. Bromate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-diffusion transport for excess of bromate ions compared to protons. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Vorotyntsev M, Antipov A. Bromate electroreduction from acidic solution at spherical microelectrode under steady-state conditions: Theory for the redox-mediator autocatalytic (EC″) mechanism. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|