1
|
Detlaff G, Zdrowowicz M, Paduszyńska M, Datta M, Grzywacz D, Kamysz W, Rak J, Nowacki A, Myszka H, Liberek B. Insight into the Course of the Ferrier Rearrangement Used to Obtain Untypical Diosgenyl Saponins. J Org Chem 2024; 89:15026-15040. [PMID: 39367832 PMCID: PMC11494662 DOI: 10.1021/acs.joc.4c01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
The Ferrier rearrangement was utilized to obtain 2,3-unsaturated diosgenyl glycosides. This reaction proceeded with high stereoselectivity, yielding mostly saponins with an α configuration (hexoses) or predominantly with a β configuration (pentoses). The diversity of the glycals used and the glycosides obtained enabled a deep discussion of the Ferrier rearrangement mechanism. The mechanism was supported by DFT calculations concerning the intermediate ions. It was concluded that the vinylogous anomeric effect may influence the reactivity of the glycals. Two possible Ferrier rearrangement intermediates, dioxolenium and allyloxycarbenium ions, were hypothesized to exist in thermodynamic equilibrium that shifted toward the former. The allyloxycarbenium ion participates in the final rearrangement step and determines the reaction regioselectivity. Furthermore, the conformational stability of the 2,3-unsaturated pyranose ring determines the stereoselectivity of the reaction. Factors influencing this stability, as well as the NMR data enabling recognition of the 0H5 and 5H0 conformations, were identified. Chemoselective hydrogenation of 2,3-unsaturated diosgenyl glycosides provided a series of 2,3-dideoxy analogues. The anticancer, hemolytic, and antibacterial activities of the synthesized saponins are presented alongside a discussion of the structure-activity relationships.
Collapse
Affiliation(s)
- Grzegorz Detlaff
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Zdrowowicz
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | - Magdalena Datta
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Daria Grzywacz
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Wojciech Kamysz
- Faculty
of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Janusz Rak
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Henryk Myszka
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beata Liberek
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Yoshioka S, Nimura S, Naruto M, Saito S. Reaction of H 2 with mitochondria-relevant metabolites using a multifunctional molecular catalyst. SCIENCE ADVANCES 2020; 6:6/43/eabc0274. [PMID: 33097541 PMCID: PMC7608823 DOI: 10.1126/sciadv.abc0274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The Krebs cycle is the fuel/energy source for cellular activity and therefore of paramount importance for oxygen-based life. The cycle occurs in the mitochondrial matrix, where it produces and transfers electrons to generate energy-rich NADH and FADH2, as well as C4-, C5-, and C6-polycarboxylic acids as energy-poor metabolites. These metabolites are biorenewable resources that represent potential sustainable carbon feedstocks, provided that carbon-hydrogen bonds are restored to these molecules. In the present study, these polycarboxylic acids and other mitochondria-relevant metabolites underwent dehydration (alcohol-to-olefin and/or dehydrative cyclization) and reduction (hydrogenation and hydrogenolysis) to diols or triols upon reaction with H2, catalyzed by sterically confined iridium-bipyridyl complexes. The investigation of these single-metal site catalysts provides valuable molecular insights into the development of molecular technologies for the reduction and dehydration of highly functionalized carbon resources.
Collapse
Affiliation(s)
- Shota Yoshioka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Sota Nimura
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Masayuki Naruto
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
- Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
3
|
Butburee T, Chakthranont P, Phawa C, Faungnawakij K. Beyond Artificial Photosynthesis: Prospects on Photobiorefinery. ChemCatChem 2020. [DOI: 10.1002/cctc.201901856] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Teera Butburee
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Pongkarn Chakthranont
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Chaiyasit Phawa
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park Pathum Thani 12120 Thailand
- School of Chemistry Institute of Science Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park Pathum Thani 12120 Thailand
| |
Collapse
|
4
|
Wang LM, Kobayashi K, Arisawa M, Saito S, Naka H. Pd/TiO 2-Photocatalyzed Self-Condensation of Primary Amines To Afford Secondary Amines at Ambient Temperature. Org Lett 2019; 21:341-344. [PMID: 30460855 DOI: 10.1021/acs.orglett.8b03271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Symmetric secondary amines were synthesized by the self-condensation of primary amines over a palladium-loaded titanium dioxide (Pd/TiO2) photocatalyst. The reactions afforded a series of secondary amines in moderate to excellent isolated yields at ambient temperature (30 °C, in cyclopentyl methyl ether). Applicability for one-pot pharmaceutical synthesis was demonstrated by a photocatalytic reaction sequence of self-condensation of an amine followed by N-alkylation of the resulting secondary amine with an alcohol.
Collapse
Affiliation(s)
- Lyu-Ming Wang
- Graduate School of Science , Nagoya University , Chikusa, Nagoya 464-8602 , Japan
| | - Kensuke Kobayashi
- Graduate School of Science , Nagoya University , Chikusa, Nagoya 464-8602 , Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences , Osaka University , Yamada-oka 1-6 , Suita, Osaka 565-0871 , Japan
| | - Susumu Saito
- Graduate School of Science , Nagoya University , Chikusa, Nagoya 464-8602 , Japan
| | - Hiroshi Naka
- Research Center for Materials Science , Nagoya University , Chikusa, Nagoya 464-8602 , Japan
| |
Collapse
|