1
|
Adamson TT, Uttley KB, Kelley SP, Bernskoetter WH. Coordination Chemistry of (Triphos)Fe(0) Ethylene Complexes and Their Application to CO 2 Valorization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tristan T. Adamson
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Katherine B. Uttley
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Takegasa S, Lee MM, Tokuhiro K, Nakano R, Yamashita M. Rhodium‐Catalyzed Acrylate Synthesis from Carbon Dioxide and Ethylene by using a Guanidine‐Based Pincer Ligand: Perturbing Occupied d‐Orbitals by pπ‐dπ Repulsion Makes a Difference. Chemistry 2022; 28:e202201870. [DOI: 10.1002/chem.202201870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shinnosuke Takegasa
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Tokai National Higher Education and Research System Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Ming Min Lee
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Tokai National Higher Education and Research System Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Kei Tokuhiro
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Tokai National Higher Education and Research System Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Ryo Nakano
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Tokai National Higher Education and Research System Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Tokai National Higher Education and Research System Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
3
|
Adamson TT, Kelley SP, Bernskoetter WH. Iron-Mediated C–C Bond Formation via Reductive Coupling with Carbon Dioxide. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tristan T. Adamson
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Pyridine-Chelated Imidazo[1,5-a]Pyridine N-Heterocyclic Carbene Nickel(II) Complexes for Acrylate Synthesis from Ethylene and CO2. Catalysts 2020. [DOI: 10.3390/catal10070758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nickel(II) dichloride complexes with a pyridine-chelated imidazo[1,5-a]pyridin-3-ylidene py-ImPy ligand were developed as novel catalyst precursors for acrylate synthesis reaction from ethylene and carbon dioxide (CO2), a highly promising sustainable process in terms of carbon capture and utilization (CCU). Two types of ImPy salts were prepared as new C,N-bidentate ligand precursors; py-ImPy salts (3, 4a–4e) having a pyridine group at C(5) on ImPy and a N-picolyl-ImPy salt (10) having a picolyl group at N atom on ImPy. Nickel(II) complexes such as py-ImPyNi(II)Cl2 (7, 8a–8e) and N-picolyl-ImPyNi(II)Cl2 (12) were synthesized via transmetalation protocol from silver(I) complexes, py-ImPyAgCl (5, 6a–6e) and N-picolyl-ImPyAgCl (11). X-ray diffraction analysis of nickel(II) complexes (7, 8b, 12) showed a monomeric distorted tetrahedral geometry and a six-membered chelate ring structure. py-ImPy ligands formed a more planar six-membered chelate with the nickel center than did N-picolyl-ImPy ligand. py-ImPyNi(II)Cl2 complexes (8a–8e) with tert-butyl substituents exhibited noticeable catalytic activity in acrylate synthesis from ethylene and CO2 (up to 108% acrylate). Interestingly, the use of additional additives including monodentate phosphines increased catalytic activity up to 845% acrylate (TON 8).
Collapse
|
5
|
Takahashi K, Hirataka Y, Ito T, Iwasawa N. Mechanistic Investigations of the Ruthenium-Catalyzed Synthesis of Acrylate Salt from Ethylene and CO 2. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kohei Takahashi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yo Hirataka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tatsuyoshi Ito
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
6
|
Takahashi K, Cho K, Iwai A, Ito T, Iwasawa N. Development of N-Phosphinomethyl-Substituted NHC-Nickel(0) Complexes as Robust Catalysts for Acrylate Salt Synthesis from Ethylene and CO 2. Chemistry 2019; 25:13504-13508. [PMID: 31464036 DOI: 10.1002/chem.201903625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 11/11/2022]
Abstract
By using a nickel complex with an N-phosphinomethyl-N-heterocyclic carbene ligand (NHC-P), the reducing ability and thermal stability of the complex were improved considerably compared to the previously reported bipyridine and bisphosphine complexes, and acrylate salt was prepared from ethylene and CO2 with the highest TON ever reported for nickel systems even without using metallic zinc. Oxidative cyclization of ethylene and CO2 on the NHC-P nickel complex was found to proceed very rapidly compared to previous systems.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kinryo Cho
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Asaki Iwai
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tatsuyoshi Ito
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
7
|
Hopkins MN, Shimmei K, Uttley KB, Bernskoetter WH. Synthesis and Reactivity of 1,2-Bis(di-iso-propylphosphino)benzene Nickel Complexes: A Study of Catalytic CO2–Ethylene Coupling. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Melissa N. Hopkins
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | | | - Katherine B. Uttley
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|