1
|
Maharjan A, Choi W, Kim HT, Park JH. Catalytic hydrolysis of agar using magnetic nanoparticles: optimization and characterization. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:193. [PMID: 38093358 PMCID: PMC10720145 DOI: 10.1186/s13068-023-02441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Agar is used as a gelling agent that possesses a variety of biological properties; it consists of the polysaccharides agarose and porphyrin. In addition, the monomeric sugars generated after agar hydrolysis can be functionalized for use in biorefineries and biofuel production. The main objective of this study was to develop a sustainable agar hydrolysis process for bioethanol production using nanotechnology. Peroxidase-mimicking Fe3O4-MNPs were applied for agar degradation to generate agar hydrolysate-soluble fractions amenable to Saccharomyces cerevisiae and Escherichia coli during fermentation. RESULTS Fe3O4-MNP-treated (Fe3O4-MNPs, 1 g/L) agar exhibited 0.903 g/L of reducing sugar, which was 21-fold higher than that of the control (without Fe3O4-MNP-treated). Approximately 0.0181% and 0.0042% of ethanol from 1% of agar was achieved using Saccharomyces cerevisiae and Escherichia coli, respectively, after process optimization. Furthermore, different analytical techniques (FTIR, SEM, TEM, EDS, XRD, and TGA) were applied to validate the efficiency of Fe3O4-MNPs in agar degradation. CONCLUSIONS To the best of our knowledge, Fe3O4-MNP-treated agar degradation for bioethanol production through process optimization is a simpler, easier, and novel method for commercialization.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Wonho Choi
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong, 27909, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, Korea.
| |
Collapse
|
2
|
So YS, Lim JM, Kang SJ, Kim WC, Kim JG. Derivation of Corrosion Depth Formula According to Corrosion Factors in District Heating Water through Regression Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3254. [PMID: 37110091 PMCID: PMC10146683 DOI: 10.3390/ma16083254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
In order to predict the corrosion depth of a district heating pipeline, it is necessary to analyze various corrosion factors. In this study, the relationship between corrosion factors such as pH, dissolved oxygen, and operating time and corrosion depth was investigated using the Box-Behnken method within the response surface methodology. To accelerate the corrosion process, galvanostatic tests were conducted in synthetic district heating water. Subsequently, a multiple regression analysis was performed using the measured corrosion depth to derive a formula for predicting the corrosion depth as a function of the corrosion factors. As a result, the following regression formula was derived for predicting the corrosion depth: "corrosion depth (μm) = -133 + 17.1 pH + 0.00072 DO + 125.2 Time - 7.95 pH × Time + 0.002921 DO × Time".
Collapse
Affiliation(s)
- Yoon-Sik So
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Y.-S.S.); (J.-M.L.); (S.-J.K.)
| | - Jeong-Min Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Y.-S.S.); (J.-M.L.); (S.-J.K.)
| | - Sin-Jae Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Y.-S.S.); (J.-M.L.); (S.-J.K.)
| | - Woo-Cheol Kim
- Plant Management and QC Division, Korea District Heating Corporation, Sungnam 13585, Republic of Korea;
| | - Jung-Gu Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Y.-S.S.); (J.-M.L.); (S.-J.K.)
| |
Collapse
|
3
|
Polińska W, Piotrowska-Niczyporuk A, Karpińska J, Struk-Sokołowska J, Kotowska U. Mechanisms, toxicity and optimal conditions - research on the removal of benzotriazoles from water using Wolffia arrhiza. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157571. [PMID: 35882328 DOI: 10.1016/j.scitotenv.2022.157571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In the presented work, phytoremediation with the use of floating plant Wolffia arrhiza (L.) Horkel ex Wimm. was proposed as a method of removing the selected benzotriazoles (BTRs): 1H-benzotriazole (1H-BTR), 4-methyl-1H-benzotriazole (4M-BTR), 5-methyl-1H-benzotriazole (5M-BTR) and 5-chlorobenzotriazole (5Cl-BTR) from water. The efficiency of phytoremediation depends on three factors: daily time of exposure to light, pH of the model solution, and the amount of plans. Using a design of experiment (DoE) methods the following optimal values were selected: plant amount 1.8 g, light exposure 13 h and pH 7 per 100 mL of the model solution. It was found that the loss of BTRs in optimal conditions ranged from 92 to 100 % except for 4M-BTR, for which only 23 % of removal was achieved after 14 days of cultivation of W. arrhiza. The half-life values for studied compounds ranged from 0.98 days for 5Cl-BTR to 36.19 for 4M-BTR. The observed rapid vanishing of 5M-BTR is supposed by the simultaneous transformation of 5M-BTR into 4M-BTR. The detailed study of BTRs degradation pointed that the plant uptake is mainly responsible for the benzotriazoles concentration decrease. Toxicity tests showed that the tested organic compounds induce oxidative stress in W. arrhiza, which manifested among others, in reduced levels of chlorophyll in cultures with benzotriazoles compared to control.
Collapse
Affiliation(s)
- Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland.
| | - Alicja Piotrowska-Niczyporuk
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland.
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland.
| | - Joanna Struk-Sokołowska
- Department of Environmental Engineering Technology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland.
| |
Collapse
|
4
|
S B, Rashmishree KN, Manu B, Sreenivasa MY. Sustainable replacement of EDTA-Biojarosite for commercial iron in the Fenton's and UV-Fenton's degradation of Rhowedamine B - a process optimization using Box-Behnken method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2008-2019. [PMID: 36315092 DOI: 10.2166/wst.2022.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biojarosite as a replacement for commercial iron catalyst in the oxidative degradation of the dye Rhodamine B was confirmed and established. Investigations on the oxidative degradation by Fenton's oxidation and UV-Fenton's oxidation with EDTA at neutral pH were conducted and degradation of target compound was evaluated. UV-Fenton's oxidation was shown to be efficient over Fenton's oxidation in the degradation of Rhodamine B with removal efficiency of 90.0%. Design of Experiments was performed with Box-Behnken design. Investigation was conducted for the predicted values separately for both Fenton's oxidation and UV-Fenton's oxidation and the Rhodamine B removal was taken as response. Variable parameters biojarosite, H2O2 dosage and EDTA were optimized in the range of 0.1-1 g/L, 2.94-29.4 mM and 10-100 mM, respectively. A quadratic regression model is fitted for both Fenton's and UV-Fenton's oxidation. Analysis of variance (ANOVA) is performed and model fit is discussed.
Collapse
Affiliation(s)
- Bhaskar S
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Mangalore 575025, India E-mail:
| | - K N Rashmishree
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Mangalore 575025, India E-mail:
| | - B Manu
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Mangalore 575025, India E-mail:
| | - M Y Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysuru, Karnataka 570006, India
| |
Collapse
|
5
|
Guvenc SY, Cebi A, Can-Güven E, Demir A, Ghanbari F, Varank G. Box-Behnken design-based biodiesel wastewater treatment using sequential acid cracking and electrochemical peroxidation process: Focus on COD, oil-grease and volatile fatty acids removals. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Evaluation of the Influence of the Combination of pH, Chloride, and Sulfate on the Corrosion Behavior of Pipeline Steel in Soil Using Response Surface Methodology. MATERIALS 2021; 14:ma14216596. [PMID: 34772119 PMCID: PMC8585169 DOI: 10.3390/ma14216596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022]
Abstract
External damage to buried pipelines is mainly caused by corrosive components in soil solution. The reality that numerous agents are present in the corrosive environment simultaneously makes it troublesome to study. To solve that issue, this study aims to determine the influence of the combination of pH, chloride, and sulfate by using a statistical method according to the design of experiment (DOE). Response surface methodology (RSM) using the Box–Behnken design (BBD) was selected and applied to the design matrix for those three factors. The input corrosion current density was evaluated by electrochemical tests under variable conditions given in the design matrix. The output of this method is an equation that calculates the corrosion current density as a function of pH, chloride, and sulfate concentration. The level of influence of each factor on the corrosion current density was investigated and response surface plots, contour plots of each factor were created in this study.
Collapse
|
7
|
Degradation of Nitrobenzene in an Aqueous Environment through Fenton-like Process Using Box–Behnken Design Method. ARCHIVES OF HYGIENE SCIENCES 2021. [DOI: 10.52547/archhygsci.10.1.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Removal of Polycyclic Aromatic Hydrocarbons in a Heterogeneous Fenton Like Oxidation System Using Nanoscale Zero-Valent Iron as a Catalyst. WATER 2020. [DOI: 10.3390/w12092430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oil and gas effluents contains highly toxic and harmful organic pollutants. Therefore, it is necessary to eliminate and/or reduced the concertation of organic pollutants to a technologically acceptable levels before their discharge into water streams. This study investigates the application of nanoscale zero-valent iron (nZVI), and hydrogen peroxide (H2O2) for removal of organic pollutants from real oily produced water. Batch studies were performed and effect of different operating parameters, including concentration of nZVI and H2O2, pH and reaction time were studied. Moreover, optimization of independent variables was performed using central composite design (CCD) in response surface methodology (RSM). The experimental set up provided maximum removal efficiencies of 89.5% and 75.3% for polycyclic aromatic hydrocarbons (PAHs) and chemical oxygen demand (COD), respectively. The optimum values of independent variables such as concentrations of nZVI, and H2O2, contact time and pH were obtained as 4.35 g/L, 1.60 g/L, 199.9 min and 2.9, respectively. Predicted PAHs and COD removal efficiencies at the optimum values of independent variables were found as 89.3% and 75.7%, respectively which are in line with the experimental values. The study indicates that application of heterogeneous Fenton like oxidation system using nZVI as a catalyst is an efficient treatment method for removal of organic pollutants from real produced water.
Collapse
|
9
|
Investigation of the Relationship Between the Level of Fine Particulate Matter and Stroke Mortality Rate in Mashhad in 2014 and 2015. HEALTH SCOPE 2020. [DOI: 10.5812/jhealthscope.99447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Air pollution is a major social problem, particularly in developing countries, where the rapid expansion of industries, cities, and traffic is the main cause of increased air pollution. Objectives: This ecological study (correlation) has been conducted with the aim of analyzing the correlation between ambient fine particulate matter (PM2.5) amount and the rate of stroke mortality in Mashhad during the years 2014 and 2015. Methods: Data were collected from hospitals, the Monitoring Center of Environmental Pollutants, and the Bureau of Meteorology in Khorasan Razavi Province and were analyzed to evaluate the correlation. Results: The results show that the correlation coefficient between PM2.5 and the rate of stroke mortality in different seasons in 2014 and 2015 are 0.997 and 0.902, respectively. The correlation was stronger in 2014 and is significant at a confidence level of 0.01. Conclusions: According to the results, the annual average concentration of PM2.5 decreased from 29.261 (μg/m3) in 2014 to 25.283 (μg/m3) in 2015, and also, the annual rate of stroke mortality decreased by 4.4% in 2015.
Collapse
|
10
|
Hasani M, Khani MR, Karimaei M, Yaghmaeian K, Shokri B. Degradation of 4-chlorophenol in aqueous solution by dielectric barrier discharge system: effect of fed gases. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:1185-1194. [PMID: 32030184 PMCID: PMC6985379 DOI: 10.1007/s40201-019-00433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 12/23/2019] [Indexed: 06/05/2023]
Abstract
A dielectric barrier discharge system with a discharging zone where degradation processes happen is designed to remove 4-chlorophenol from water. The removal of 4-chlorophenol was influenced by the processing parameters such as gas flow rate, flow ratio of oxygen and argon, applied voltage and total applied power. Increasing the power or gas flow rates within a certain range enhanced the removal efficiency. 99% of 4-chlorophenol was removed in 6.5 min at reactor's efficient point which is set by adjusting the flow ratio of introduced gases and voltage. The removal percent was about 95% at 5 min of non-thermal plasma treatment with peak voltage of 10 kV and oxygen and argon flow rate of 20 SCCM and 200 SCCM respectively. Then by adjusting the flow ratios in order to find the optimum point. At this point the efficiency reached its peak due to excessive introduction oxygen gas which results in production of more oxidative agents. HPLC and GC-MS analysis have been carried out in order to investigate the by-products of degradation process. After 6.5 min of treatment at efficient point of degradation reactor, a 64% decrease in COD index has been indicated.
Collapse
Affiliation(s)
- Mohammad Hasani
- Department of Physics, Shahid Beheshti University, Tehran, 19839-63113 Iran
| | - Mohammad-Reza Khani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-63113 Iran
| | - Mostafa Karimaei
- Department of Environmental Health Engineering, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Shokri
- Department of Physics, Shahid Beheshti University, Tehran, 19839-63113 Iran
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-63113 Iran
| |
Collapse
|
11
|
Shi ZQ, Liu YS, Xiong Q, Cai WW, Ying GG. Occurrence, toxicity and transformation of six typical benzotriazoles in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:407-421. [PMID: 30677686 DOI: 10.1016/j.scitotenv.2019.01.138] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 05/28/2023]
Abstract
Benzotriazoles (BTs) are a group of heterocyclic compounds which have been widely applied in industrial activities and domestic life mainly as corrosive inhibitors. BTs have been ubiquitously detected in receiving environments and cause potential toxicity to non-target organisms. This paper reviews the occurrence and fate of six selected benzotriazole compounds in different environmental and biological matrices, as well as the transformation and toxicity. Due to their high hydrophilicity and insufficient removal in wastewater treatment plants (WWTPs), these compounds were widely detected in aquatic environments with concentrations mainly from tens ng/L to tens μg/L. Considerable residual levels of BTs in plant, fish, air, tap water and human urine have implied the potential risks to various organsims. The reported acute toxicity of BTs are generally low (EC50 in mg/L level). Some observed sublethal effects including endocrine disrupting effects, hepatotoxicity and neurotoxicity, as well as the ability to promote the development of endometrial carcinoma still raise a concern. BTs are found often more recalcitrant to biodegradation compared to photolysis and ozonation. Environmental factors including pH, temperature, irradiation wavelength, redox condition as well as components of matrix are proved crucial to the removal of BTs. Further studies are needed to explore the precise environment fate and toxicity mechanism of BTs, and develop advanced treatment technologies to reduce the potential ecological risks of BTs.
Collapse
Affiliation(s)
- Zhou-Qi Shi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Sheng Liu
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Qian Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Wen Cai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
12
|
Ahmadi M, Ghanbari F. Degradation of organic pollutants by photoelectro-peroxone/ZVI process: Synergistic, kinetic and feasibility studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:32-39. [PMID: 30212672 DOI: 10.1016/j.jenvman.2018.08.102] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 05/28/2023]
Abstract
In this study a novel hybrid process was employed for the degradation of Metanil Yellow (MY). The operational parameters of photoelectro-peroxone/zero valent iron (PEP/ZVI) process were studied and the complete decoloration was found at pH = 3.0, 100 mg/L ZVI, 33.2 mg/L ozone, 300 mA applied current and 25 min reaction time. The combination of UV, ozone, electrogenerated H2O2 and ZVI showed high synergistic effect for MY degradation. ZVI showed high reusability in PEP/ZVI process. Among anions, nitrite ion demonstrated high inhibitory effect while chloride ions had no significant effect on MY degradation. Scavenging tests depicted that hydroxyl radical and singlet oxygen were the main agents of MY degradation. PEP/ZVI process was tested for several emerging pollutants (benzotriazole, 4-chlorophenol, carmoisine and tetracycline); the results presented the effectiveness of the process for the degradation of pollutants in a way that complete degradation occurred at only 30 min. Moreover, the performance of PEP/ZVI was examined for the treatment of two actual wastewaters. PEP/ZVI demonstrated an excellent function in terms of the removal of organic compounds to achieve discharging standards.
Collapse
Affiliation(s)
- Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshid Ghanbari
- Department of Environmental Health Engineering, Abadan School of Medical Sciences, Abadan, Iran.
| |
Collapse
|