1
|
Ain NU, Abdul Nasir J, Khan Z, Butler IS, Rehman Z. Copper sulfide nanostructures: synthesis and biological applications. RSC Adv 2022; 12:7550-7567. [PMID: 35424661 PMCID: PMC8982292 DOI: 10.1039/d1ra08414c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/18/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few years, considerable attention has been paid to biomedical applications of copper sulfide nanostructures owing to their enhanced physiochemical and pharmacokinetics characteristics in comparison to gold, silver, and carbon nanomaterials. The small-sized Cu x S y nanoparticles have the advantage to absorb efficiently in the near-infrared region (NIR) above 700 nm and the absorption can be tuned by altering their stoichiometries. Moreover, their easy removal through the kidneys overpowers the issue of toxicity caused by many inorganic substances. The low cost and selectivity further add to the advantages of Cu x S y nanostructures as electrode materials in comparison to relatively expensive materials such as silver and gold nanoparticles. This review is mainly focused on the synthesis and biomedical applications of Cu x S y nanostructures. The first part summarizes the various synthetic routes used to produce Cu x S y nanostructures with varying morphologies, while the second part targets the recent progress made in the application of small-sized Cu x S y nanostructures as biosensors, and their analysis and uses in the cure of cancer. Photoacoustic imaging and other cancer treatment applications are discussed. Research on Cu x S y nanostructures will continue to increase over the next few decades, and great opportunities lie ahead for potential biomedical applications of Cu x S y nanostructures.
Collapse
Affiliation(s)
- Noor Ul Ain
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Zaibunisa Khan
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Ian S Butler
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montreal Quebec Canada H3A 0B8
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-(051)90642241 +92-(051)90642245
| |
Collapse
|
2
|
Nazary Abrbekoh F, Salimi L, Saghati S, Amini H, Fathi Karkan S, Moharamzadeh K, Sokullu E, Rahbarghazi R. Application of microneedle patches for drug delivery; doorstep to novel therapies. J Tissue Eng 2022; 13:20417314221085390. [PMID: 35516591 PMCID: PMC9065468 DOI: 10.1177/20417314221085390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
In the past decade, microneedle-based drug delivery systems showed promising approaches to become suitable and alternative for hypodermic injections and can control agent delivery without side effects compared to conventional approaches. Despite these advantages, the procedure of microfabrication is facing some difficulties. For instance, drug loading method, stability of drugs, and retention time are subjects of debate. Besides, the application of novel refining fabrication methods, types of materials, and instruments are other issues that need further attention. Herein, we tried to summarize recent achievements in controllable drug delivery systems (microneedle patches) in vitro and in vivo settings. In addition, we discussed the influence of delivered drugs on the cellular mechanism and immunization molecular signaling pathways through the intradermal delivery route. Understanding the putative efficiency of microneedle patches in human medicine can help us develop and design sophisticated therapeutic modalities.
Collapse
Affiliation(s)
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res 2021; 25:24. [PMID: 34321111 PMCID: PMC8317283 DOI: 10.1186/s40824-021-00226-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/18/2021] [Indexed: 01/05/2023] Open
Abstract
Various non-invasive administrations have recently emerged as an alternative to conventional needle injections. A transdermal drug delivery system (TDDS) represents the most attractive method among these because of its low rejection rate, excellent ease of administration, and superb convenience and persistence among patients. TDDS could be applicable in not only pharmaceuticals but also in the skin care industry, including cosmetics. Because this method mainly involves local administration, it can prevent local buildup in drug concentration and nonspecific delivery to tissues not targeted by the drug. However, the physicochemical properties of the skin translate to multiple obstacles and restrictions in transdermal delivery, with numerous investigations conducted to overcome these bottlenecks. In this review, we describe the different types of available TDDS methods, along with a critical discussion of the specific advantages and disadvantages, characterization methods, and potential of each method. Progress in research on these alternative methods has established the high efficiency inherent to TDDS, which is expected to find applications in a wide range of fields.
Collapse
Affiliation(s)
- Woo Yeup Jeong
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mina Kwon
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Oliveira LB, Geller M, Cunha KS, Santos A, Bernacchi A, Rubenstein AE, Takirambudde S, Mezitis S, de Almeida Ito Brum C, Darrigo LG, Ribeiro MG. Clinical assessment of the use of topical liquid diclofenac following laser microporation of cutaneous neurofibromas in individuals with neurofibromatosis type 1. Heliyon 2021; 7:e06518. [PMID: 33817379 PMCID: PMC8010391 DOI: 10.1016/j.heliyon.2021.e06518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/16/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with a prevalence of 1:3000 births and a wide variety of clinical manifestations. Cutaneous neurofibromas (cNF) are among the most common visible manifestations of NF1 and present a major clinical burden for patients. NF1 patients with cNF often report decreased quality of life, emotional well-being and physical comfort. Developing effective medical therapies for cNF has been identified as a priority for the majority of adults with NF1. Methods The study was an open, controlled and prospective proof-of-concept clinical trial. The topical treatment consisted of two steps: cNF microporation using a laser device followed by topical application of one drop of diclofenac 25 mg/mL on the surface of the cNF (T neurofibroma = treatment) or physiological saline (C neurofibroma = control) and reapplied twice daily for 3 days. Neurofibroma assessments included visual and dermatoscopy observations noting color and presence of necrosis, presence of flaccidity, measurements in two dimensions, photographs, and histopathology after excision. The primary efficacy variable was the presence of tissue necrosis. The primary safety variable was the occurrence of treatment-related adverse events. Results Six patients were included in the study. The treatment resulted in transitory topical changes (healing of the microporation grid with formation of scintillating tissue layer, hyperemia and desquamation), with no statistically significant variation in the dimensions of the T and C neurofibromas in relation to pretreatment measurements. There was no necrosis in the T or C neurofibromas. In the histopathological analysis, there was no significant difference in the distribution of chronic (lymphocytic) inflammatory infiltrate in the papillary reticular dermis (subepithelial), type of infiltrate (diffuse, perivascular, or both), presence of fibrosis, and presence of atrophy among the T and C neurofibromas. No adverse events attributable to the use of diclofenac were reported during the treatment period. Conclusions Treatment did not result in significant alterations in terms of presence of tissue necrosis, size, or histopathological features in the T neurofibromas or in comparison to the C neurofibromas. Topical diclofenac with laser microporation was well-tolerated, with no adverse events attributable to diclofenac reported. Whether these observations are due to minimal systemic and neurofibroma exposure remain to be explored in dosage studies with larger patient groups. Trial registration ClinicalTrials.gov (NCT03090971) retrospectively registered March 27, 2017.
Collapse
Affiliation(s)
- Lisa Brauer Oliveira
- Postgraduate Program in Clinical Medicine, Universidade Federal do Rio de Janeiro (UFRJ) - Rio de Janeiro, Brazil
| | - Mauro Geller
- Medical Genetics Service, Instituto de Puericultura e Pediatria Martagão Gesteira Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Immunology and Microbiology, Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Clinical Immunology, Instituto de Pós-Graduação Médica Carlos Chagas - Rio de Janeiro, Brazil
| | - Karin Soares Cunha
- Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF) Medical School, Niterói, Brazil.,Pathology Department, Faculdade de Medicina - Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Alessandra Santos
- Postgraduate Program in Clinical Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Allan Bernacchi
- Department of Plastic Surgery, Serviço Prof. Pitanguy, Santa Casa da Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan E Rubenstein
- Department of Neurology and Pediatrics, NYU Langone Medical Center, New York, NY, USA
| | - Sanyu Takirambudde
- Department of Pediatrics, New York University Langone Medical Center, New York, NY, USA
| | - Spyros Mezitis
- Department of Endocrinology/Clinical Medicine, Weill Medical College of Cornell University, New York, NY, USA.,New York Presbyterian Hospital/Cornell Medicine, Lenox Hill Hospital/Northwell Health, New York, NY, USA
| | | | - Luiz Guilherme Darrigo
- Bone Marrow Transplant Unit, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcia Gonçalves Ribeiro
- Department of Pediatrics, Federal University of Rio de Janeiro Medical School (UFRJ), Rio de Janeiro, Brazil.,Medical Genetics Service, Instituto de Puericultura e Pediatria Martagão Gesteira, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
NIR-triggered doxorubicin photorelease using CuS@Albumin composites and in-vitro effect over HeLa cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Ahmadi-Ashtiani HR, Bishe P, Baldisserotto A, Buso P, Manfredini S, Vertuani S. Stem Cells as a Target for the Delivery of Active Molecules to Skin by Topical Administration. Int J Mol Sci 2020; 21:ijms21062251. [PMID: 32213974 PMCID: PMC7139485 DOI: 10.3390/ijms21062251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cutaneous stem cells, gained great attention in the field of regenerative medicine as a potential therapeutic target for the treatment of skin and hair disorders and various types of skin cancers. Cutaneous stem cells play a key role in several processes like the renovation of skin structures in the condition of homeostasis and after injuries, the hair follicle growth and the reconstruction and production of melanocytes. Thus, gaining effective access to skin stem cells for therapeutic interventions that often involve active molecules with non-favorable characteristics for skin absorption is a valuable achievement. The topical route with high patient compliance and several other benefits is gaining increasing importance in basic and applied research. However, the major obstacle for topical drug delivery is the effective barrier provided by skin against penetration of the vast majority of exogenous molecules. The research in this field is focusing more and more on new strategies to circumvent and pass this barrier effectively. In this article the existing approaches are discussed considering physical and chemical methods along with utilization of novel drug delivery systems to enhance penetration of drugs to the skin. In particular, attention has been paid to studies finalized to the delivery of molecules to cutaneous stem cells with the aim of transferring signals, modulating their metabolic program, inducing physiological modifications and stem cell gene therapy.
Collapse
Affiliation(s)
- Hamid-Reza Ahmadi-Ashtiani
- Department of Basic Sciences, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 194193311, Iran;
- Cosmetic, Hygienic and Detergent Sciences and Technology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19419311, Iran
- Correspondence: (H.-R.A.-A.); (A.B.); Tel.: +39-21-226400515 (H.-R.A.-A.); +39-0532-455258 (A.B.)
| | - Parisa Bishe
- Department of Basic Sciences, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 194193311, Iran;
- Cosmetic, Hygienic and Detergent Sciences and Technology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19419311, Iran
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
- Correspondence: (H.-R.A.-A.); (A.B.); Tel.: +39-21-226400515 (H.-R.A.-A.); +39-0532-455258 (A.B.)
| | - Piergiacomo Buso
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
| |
Collapse
|
7
|
Baghban Taraghdari Z, Imani R, Mohabatpour F. A Review on Bioengineering Approaches to Insulin Delivery: A Pharmaceutical and Engineering Perspective. Macromol Biosci 2019; 19:e1800458. [DOI: 10.1002/mabi.201800458] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zahra Baghban Taraghdari
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
| | - Rana Imani
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
| | - Fatemeh Mohabatpour
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
- Division of Biomedical EngineeringUniversity of Saskatchewan Saskatoon S7N5A9 Canada
| |
Collapse
|
8
|
Qualitative and quantitative analysis of lateral diffusion of drugs in human skin. Int J Pharm 2018; 544:62-74. [DOI: 10.1016/j.ijpharm.2018.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022]
|
9
|
Szunerits S, Boukherroub R. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery. Front Bioeng Biotechnol 2018; 6:15. [PMID: 29497609 PMCID: PMC5818408 DOI: 10.3389/fbioe.2018.00015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/26/2018] [Indexed: 01/05/2023] Open
Abstract
Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section "Frontiers in Bioengineering and Biotechnology," the advances in this field and the handful of examples of thermal technologies for local and systemic transdermal drug delivery will be discussed and put into perspective.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, Lille, France
| |
Collapse
|
10
|
Puri A, Murnane KS, Blough BE, Banga AK. Effects of chemical and physical enhancement techniques on transdermal delivery of 3-fluoroamphetamine hydrochloride. Int J Pharm 2017. [PMID: 28633107 DOI: 10.1016/j.ijpharm.2017.06.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The present study investigated the passive transdermal delivery of 3-fluoroamphetamine hydrochloride (PAL-353) and evaluated the effects of chemical and physical enhancement techniques on its permeation through human skin. In vitro drug permeation studies through dermatomed human skin were performed using Franz diffusion cells. Passive permeation of PAL-353 from propylene glycol and phosphate buffered saline as vehicles was studied. Effect of oleic acid, maltose microneedles, ablative laser, and anodal iontophoresis on its transdermal permeation was investigated. Infrared spectroscopy, scanning electron microscopy, calcein imaging, confocal laser microscopy, and histology studies were used to characterize the effects of chemical and physical treatments on skin integrity. Passive permeation of PAL-353 (propylene glycol) after 24h was found to be 1.03±0.17μg/cm2. Microneedles, oleic acid, and laser significantly increased the permeation to 7.35±4.87μg/cm2, 38.26±5.56μg/cm2, and 523.24±86.79μg/cm2 (p<0.05), respectively. A 548-fold increase in drug permeation was observed using iontophoresis as compared to its passive permeation from phosphate buffered saline (p<0.05). The characterization studies depicted disruption of the stratum corneum by microneedles and laser treatment. Overall, transdermal permeation of PAL-353 was significantly enhanced by the use of chemical and physical enhancement techniques.
Collapse
Affiliation(s)
- Ashana Puri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, 30341, USA
| | - Kevin S Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, 30341, USA
| | - Bruce E Blough
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Ajay K Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, 30341, USA.
| |
Collapse
|
11
|
Teodorescu F, Quéniat G, Foulon C, Lecoeur M, Barras A, Boulahneche S, Medjram MS, Hubert T, Abderrahmani A, Boukherroub R, Szunerits S. Transdermal skin patch based on reduced graphene oxide: A new approach for photothermal triggered permeation of ondansetron across porcine skin. J Control Release 2017; 245:137-146. [DOI: 10.1016/j.jconrel.2016.11.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/23/2016] [Accepted: 11/25/2016] [Indexed: 01/07/2023]
|