1
|
Calovi M, Rossi S. Assessing the Impact of Sepiolite-Based Bio-Pigment Infused with Indigo Extract on Appearance and Durability of Water-Based White Primer. MATERIALS (BASEL, SWITZERLAND) 2024; 17:941. [PMID: 38399192 PMCID: PMC10889954 DOI: 10.3390/ma17040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
The objective of this study is to evaluate how two varying amounts of sepiolite-based powder, infused with indigo extract, affect the appearance and durability of a water-based, white primer. To examine the influence of this eco-friendly pigment on the coatings' overall appearance, assessments were performed for color, gloss, and surface roughness. Additionally, the coatings were investigated through optical and electron microscopic observations, to evaluate the distribution of the pigment within the polymer matrix. The effect of the pigment on the coating's durability was assessed through accelerated tests, including exposure in a salt spray chamber and a UV-B chamber. These tests aimed to evaluate the emergence of defects and changes in the appearance of the samples over time. Furthermore, the impact of different quantities of sepiolite-based powder on the coating's ability to act as a barrier was assessed using liquid resistance tests and contact angle measurements. These evaluations aimed to understand how the coating responded to various liquids and its surface properties concerning repellency or absorption. In essence, this study underscores the considerable influence of the eco-friendly pigment, demonstrating its capacity to introduce unique color and texture variations in the paint. Moreover, the inclusion of the pigment has enhanced the coating's color stability, its ability to act as a barrier, and its overall durability when exposed to harsh environments.
Collapse
Affiliation(s)
| | - Stefano Rossi
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| |
Collapse
|
2
|
Pan F, Khan M, Tiehu L, Javed E, Hussain A, Zada A, Alei D, Wahab Z. Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Nanodiamonds (NDs), the allotropic carbon nanomaterials with nanosize, durable inert core, adjustable surface morphology, high thermal constancy, and super mechanical performances, possess the characteristics of promising reinforcement materials for various technological applications. However, ND particles hold a vigorous propensity to aggregate in liquid media, obstructing their implementation in mechanical and thermal sciences. This aggregation is caused by high surface to volume ratio. By reducing the surface energy and lowering cluster formation, the mechanical and thermal properties of NDs can be polished. Herein, we report on the covalent functionalization of NDs with amine moiety through ball milling method. Their dispersion was checked in ethanol and polymethyl methacrylate (PMMA polymer) against nonfunctionalized NDs. The dispersive behavior showed that ball mill functionalized NDs produced preferably stable aqueous dispersions in ethanol media. Furthermore, 0.1, 0.2, and 0.4 wt% ND/PMMA composites were synthesized, and their mechanical and thermal behaviors were studied in terms of hardness, compression, Young`s modulus, flexural strength, tensile strength, and thermogravimetric analysis (TGA). Results revealed that the composites containing 0.2 wt% functionalized ND loaded with PMMA matrix showed outstanding mechanical and thermal performances indicating that 0.2 wt% is the optimum amount for achieving excellent outcomes.
Collapse
Affiliation(s)
- Feng Pan
- School of Mechanical Engineering , Xijing University , Xi'an 710123 , China
| | - Muhammad Khan
- School of Materials Science and Engineering, Northwestern Polytechnical University , 710072 Xian , P. R. China
| | - Li Tiehu
- School of Materials Science and Engineering, Northwestern Polytechnical University , 710072 Xian , P. R. China
| | - Elisha Javed
- Department of Chemistry , University of Okara Renala Khurd , Okara 56300 , Punjab , Pakistan
| | - Amjad Hussain
- Department of Chemistry , University of Okara Renala Khurd , Okara 56300 , Punjab , Pakistan
| | - Amir Zada
- Department of Chemistry , Abdul Wali Khan University Mardan , K.P.K 23200 , Pakistan
| | - Dang Alei
- School of Materials Science and Engineering, Northwestern Polytechnical University , 710072 Xian , P. R. China
| | - Zainul Wahab
- Department of Conservation Studies , Hazara University , Mansehra , 21120 K.P.K , Pakistan
| |
Collapse
|
3
|
Xu T, Qian D, Hu Y, Zhu Y, Zhong Y, Zhang L, Xu H, Mao Z. Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe 3+ for flame-retardant cotton fabric. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To impart durable flame retardant property to cotton fabric, a kind of multilayered hybrid film based on environmentally friendly phytic acid, sepiolite, polyaspartic acid, and Fe3+ were deposited on the surface of cotton fabric by layer-by-layer and spraying method to form a dense protective layer. Compared with cotton fabric, hybrid film coated cotton showed excellent flame retardant property and low fire hazard, which can be demonstrated by vertical flame test, limiting oxygen index (LOI) and cone calorimeter test. After-flame time and after-glow time of hybrid film coated cotton is 1 s and 1 s, respectively. LOI value of hybrid film coated cotton increased by 44.4% compared with control sample. Cone calorimeter test revealed a total heat release rate reduction of 52.6% and peak heat release rate reduction of 73.6% for hybrid film coated cotton fabric. This work demonstrates that the hybrid film composed of phytic acid, sepiolite, polyaspartic acid, and Fe3+ could improve the durable flame retardant property of cotton fabric.
Collapse
Affiliation(s)
- Tong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Di Qian
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Yelei Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Yuanzhao Zhu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Yi Zhong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Linping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Ministry of Education , Tsinghua University , Beijing , 100084 , P. R. China
| | - Hong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
| | - Zhiping Mao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education , Donghua University , Shanghai , 201620 , P. R. China
- National Dyeing and Finishing Engineering Technology Research Center , Donghua University , No. 2999, North Renmin Road, Songjiang District , Shanghai 201620 , P. R. China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology , Taian , Shandong Province , 271000 , P. R. China
| |
Collapse
|