1
|
Distaso M, Abella E. Design of PtSn Nanocatalysts for Fuel Cell Applications. Chempluschem 2024:e202400151. [PMID: 39382180 DOI: 10.1002/cplu.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/30/2024] [Indexed: 10/10/2024]
Abstract
The challenges in the fuel cell industry lie in the cost, performance, and durability of the electrode components, especially the platinum-based catalysts. Alloying has been identified as an effective strategy to reduce the cost of the catalyst and increase its efficiency and durability. So far, most studies focused on the design of PtM bimetallic nanocatalyst, where M is a transition metal. The resulting PtM materials show higher catalytic activity, but their stability remained challenging. In addition, most of the transition metals M are expensive or low abundant. Tin (Sn) has gained attention as alloying element due to its versatility in manufacturing both anode and cathode electrodes. If used as anode catalyst, it is able to overcome poisoning from CO and related intermediates. As cathode catalyst, it improves the kinetics of the oxygen reduction reaction (ORR). Additionally, Sn is an abundant and cheap element. The current contribution outlines the state of the art on the alloy and shape effect on PtSn activity and stability, demonstrating its high potential to develop cheaper, more efficient and durable catalysts for fuel-cell electrodes. Additionally, in situ analytical and spectroscopic studies can shed light on the elementary steps involved in the use of PtSn catalytic systems. Finally, this intriguing material can be used as a parent system for the synthesis of high-entropy-alloys and intermetallics materials.
Collapse
Affiliation(s)
- Monica Distaso
- Friedrich-Alexander University Erlangen-Nürnberg, Interdisciplinary Center for Functional Particle Systems, Haberstraße 9a, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstr. 1, 91058, Erlangen, Germany
| | - Erika Abella
- Friedrich-Alexander University Erlangen-Nürnberg, Interdisciplinary Center for Functional Particle Systems, Haberstraße 9a, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Abstract
A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses. Also, examples are discussed in which machine learning has been useful in this field. There are many areas at the frontier in condensed matter theory and simulation that are or could be beneficial in this area and these prospects for future progress are discussed.
Collapse
Affiliation(s)
- Kristen A Fichthorn
- Department of Chemical Engineering and Department of Physics The Pennsylvania State University University Park, Pennsylvania 16803 United States
| |
Collapse
|
3
|
Perroni PB, Del Colle V, Tremiliosi-Filho G, Varela H. Electro-oxidation of methanol and glucose on preferentially oriented platinum surfaces: the role of oscillatory kinetics. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Timakwe S, Silwana B, Matoetoe MC. Electrochemistry as a Complementary Technique for Revealing the Influence of Reducing Agent Concentration on AgNPs. ACS OMEGA 2022; 7:4921-4931. [PMID: 35187311 PMCID: PMC8851659 DOI: 10.1021/acsomega.1c05374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 05/23/2023]
Abstract
The synthesis process of AgNPs has been attracting a lot of attention in the fields of biosensors/sensors, diagnostics, and therapeutic applications. An attempt to understand the effect of different concentrations of reducing agents on the synthetic design process has been made. In this paper, we gather information on voltammetry studies and relate it with UV-vis and scanning electron microscopy (SEM) analyses. Given the kinetics, localized surface plasmon absorption (LSPR) band, and narrow size distribution of these methods, it was possible to compare the obtained measurements and clearly distinguish sizes and aggregation. AgNPs measured by SEM showed a statistically significant reduction of the nanoparticle sizes from 65 to 37.5 nm as the reducing agent increased. Well-matched d-spacing data calculated from selected area electron diffraction (SAED) patterns and X-ray diffraction (XRD) were obtained for all of the samples. The UV-vis studies showed that the SPR bands shift toward the blue region as the reducing agent concentration is increased, indicating a decrease in particle sizes. It is worth emphasizing that cyclic voltammetry (CV) and differential pulse voltammetry (DPV) coincide well with SEM on the aggregation of AgNPs at higher concentrations. A 10 mM reducing agent concentration resulted in uniform outcomes for producing AgNPs with the smallest size in terms of full width at half-maximum (FWHM) in all of the methods used in this study, while UV-vis band gaps increase with increasing reducing agent concentration. In agreement with all of the methods investigated, the results suggested that the best concentration of the reducing agents is 10 mM for a target application. These findings suggest the usefulness of voltammetry as a complementary method that can be used as a qualitative guide to identify the size and aggregation of NPs.
Collapse
|
6
|
Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020; 25:E5787. [PMID: 33302537 PMCID: PMC7763225 DOI: 10.3390/molecules25245787] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the rise in public health awareness, research on point-of-care testing (POCT) has significantly advanced. Electrochemical biosensors (ECBs) are one of the most promising candidates for the future of POCT due to their quick and accurate response, ease of operation, and cost effectiveness. This review focuses on the use of metal nanoparticles (MNPs) for fabricating ECBs that has a potential to be used for POCT. The field has expanded remarkably from its initial enzymatic and immunosensor-based setups. This review provides a concise categorization of the ECBs to allow for a better understanding of the development process. The influence of structural aspects of MNPs in biocompatibility and effective sensor design has been explored. The advances in MNP-based ECBs for the detection of some of the most prominent cancer biomarkers (carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), Herceptin-2 (HER2), etc.) and small biomolecules (glucose, dopamine, hydrogen peroxide, etc.) have been discussed in detail. Additionally, the novel coronavirus (2019-nCoV) ECBs have been briefly discussed. Beyond that, the limitations and challenges that ECBs face in clinical applications are examined and possible pathways for overcoming these limitations are discussed.
Collapse
Affiliation(s)
- Tamanna Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahedi Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - A. J. Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| |
Collapse
|
7
|
Antuña-Jiménez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. BIOSENSORS 2020; 10:E9. [PMID: 32024126 PMCID: PMC7167755 DOI: 10.3390/bios10020009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/24/2023]
Abstract
Recent progress in the field of electroanalysis with metal nanoparticle (NP)-based screen-printed electrodes (SPEs) is discussed, focusing on the methods employed to perform the electrode surface functionalization, and the final application achieved with different types of metallic NPs. The ink mixing approach, electrochemical deposition, and drop casting are the usual methodologies used for SPEs' modification purposes to obtain nanoparticulated sensing phases with suitable tailor-made functionalities. Among these, applications on inorganic and organic molecule sensing with several NPs of transition metals, bimetallic alloys, and metal oxides should be highlighted.
Collapse
Affiliation(s)
| | | | | | - Pablo Fanjul-Bolado
- Metrohm DropSens S.L., Edificio CEEI-Parque Tecnológico de Asturias, 33428 Llanera, Spain; (D.A.-J.); (M.B.G.-G.); (D.H.-S.)
| |
Collapse
|
8
|
Rodriguez P, Solla-Gullón J. Editorial: Electrocatalysis on Shape-Controlled Nanoparticles. Front Chem 2020; 7:885. [PMID: 31921792 PMCID: PMC6932981 DOI: 10.3389/fchem.2019.00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - José Solla-Gullón
- Institute of Electrochemistry, University of Alicante, Alicante, Spain
| |
Collapse
|
9
|
Dionigi F, Weber CC, Primbs M, Gocyla M, Bonastre AM, Spöri C, Schmies H, Hornberger E, Kühl S, Drnec J, Heggen M, Sharman J, Dunin-Borkowski RE, Strasser P. Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst. NANO LETTERS 2019; 19:6876-6885. [PMID: 31510752 DOI: 10.1021/acs.nanolett.9b02116] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report and study the translation of exceptionally high catalytic oxygen electroreduction activities of molybdenum-doped octahedrally shaped PtNi(Mo) nanoparticles from conventional thin-film rotating disk electrode screenings (3.43 ± 0.35 A mgPt-1 at 0.9 VRHE) to membrane electrode assembly (MEA)-based single fuel cell tests with sustained Pt mass activities of 0.45 A mgPt-1 at 0.9 Vcell, one of the highest ever reported performances for advanced shaped Pt alloys in real devices. Scanning transmission electron microscopy with energy dispersive X-ray analysis (STEM-EDX) reveals that Mo preferentially occupies the Pt-rich edges and vertices of the element-anisotropic octahedral PtNi particles. Furthermore, by combining in situ wide-angle X-ray spectroscopy, X-ray fluorescence, and STEM-EDX elemental mapping with electrochemical measurements, we finally succeeded to realize high Ni retention in activated PtNiMo nanoparticles even after prolonged potential-cycling stability tests. Stability losses at the anodic potential limits were mainly attributed to the loss of the octahedral particle shape. Extending the anodic potential limits of the tests to the Pt oxidation region induced detectable Ni losses and structural changes. Our study shows on an atomic level how Mo adatoms on the surface impact the Ni surface composition, which, in turn, gives rise to the exceptionally high experimental catalytic ORR reactivity and calls for strategies on how to preserve this particular surface composition to arrive at performance stabilities comparable with state-of-the-art spherical dealloyed Pt core-shell catalysts.
Collapse
Affiliation(s)
- F Dionigi
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - C Cesar Weber
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - M Primbs
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - M Gocyla
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - A Martinez Bonastre
- Johnson Matthey Technology Centre , Blount's Court , Sonning Common, Reading RG4 9NH , United Kingdom
| | - C Spöri
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - H Schmies
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - E Hornberger
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - S Kühl
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - J Drnec
- European Synchrotron Radiation Facility , ID 31 Beamline, BP 220, Cedex F-38043 Grenoble , France
| | - M Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - J Sharman
- Johnson Matthey Technology Centre , Blount's Court , Sonning Common, Reading RG4 9NH , United Kingdom
| | - R Edward Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - P Strasser
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
- Ertl Center for Electrochemistry and Catalysis , Gwangju Institute of Science and Technology , Gwangju 500-712 , South Korea
| |
Collapse
|
10
|
Devivaraprasad R, Nalajala N, Bera B, Neergat M. Electrocatalysis of Oxygen Reduction Reaction on Shape-Controlled Pt and Pd Nanoparticles-Importance of Surface Cleanliness and Reconstruction. Front Chem 2019; 7:648. [PMID: 31637231 PMCID: PMC6787902 DOI: 10.3389/fchem.2019.00648] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/10/2019] [Indexed: 01/04/2023] Open
Abstract
Shape-controlled precious metal nanoparticles have attracted significant research interest in the recent past due to their fundamental and scientific importance. Because of their crystallographic-orientation-dependent properties, these metal nanoparticles have tremendous implications in electrocatalysis. This review aims to discuss the strategies for synthesis of shape-controlled platinum (Pt) and palladium (Pd) nanoparticles and procedures for the surfactant removal, without compromising their surface structural integrity. In particular, the electrocatalysis of oxygen reduction reaction (ORR) on shape-controlled nanoparticles (Pt and Pd) is discussed and the results are analyzed in the context of that reported with single crystal electrodes. Accepted theories on the stability of precious metal nanoparticle surfaces under electrochemical conditions are revisited. Dissolution, reconstruction, and comprehensive views on the factors that contribute to the loss of electrochemically active surface area (ESA) of nanoparticles leading to an inevitable decrease in ORR activity are presented. The contribution of adsorbed electrolyte anions, in-situ generated adsorbates and contaminants toward the ESA reduction are also discussed. Methods for the revival of activity of surfaces contaminated with adsorbed impurities without perturbing the surface structure and its implications to electrocatalysis are reviewed.
Collapse
Affiliation(s)
- Ruttala Devivaraprasad
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Naresh Nalajala
- National Chemical Laboratory, Catalysis Division, Pune, India
| | - Bapi Bera
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Manoj Neergat
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
11
|
Garnier E, Vidal-Iglesias FJ, Feliu JM, Solla-Gullón J. Surface Structure Characterization of Shape and Size Controlled Pd Nanoparticles by Cu UPD: A Quantitative Approach. Front Chem 2019; 7:527. [PMID: 31417893 PMCID: PMC6684747 DOI: 10.3389/fchem.2019.00527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022] Open
Abstract
The search for new surface sensitive probes that characterize the surface structure of shape and size-controlled nanoparticles is an interesting topic to properly understand the correlations between electrocatalytic properties and surface structure at the nanoscale. Herein, we report the use of Cu UPD to characterize, not only qualitatively but also quantitatively, the surface structure of different Pd nanoparticles with controlled particle shape and size. Thus, Pd nanoparticles with cubic, octahedral and rhombic dodecahedral shapes, that is, with preferential {100}, {111}, and {110} surface structures, respectively, were prepared. In addition, cubic Pd nanoparticles with different particles sizes and spherical (2–3 nm) Pd nanoparticles were also synthesized. Based on the Cu UPD results on Pd single crystals, a new approach is proposed to qualitatively and quantitatively determine the percentages of {100}, {111}, and {110} surface domains present at the surface of the different shape and size controlled Pd nanoparticles. The results reported clearly show the benefits of this Cu UPD to get detailed information of the surface structure of the nanoparticles according to their particle shape and size.
Collapse
Affiliation(s)
- Emmanuel Garnier
- Instituto de Electroquímica, Universidad de Alicante, Alicante, Spain
| | | | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante, Spain
| | - José Solla-Gullón
- Instituto de Electroquímica, Universidad de Alicante, Alicante, Spain
| |
Collapse
|