1
|
Mamgain R, Mishra G, Kriti S, Singh FV. Organoselenium compounds beyond antioxidants. Future Med Chem 2024:1-23. [PMID: 39711134 DOI: 10.1080/17568919.2024.2435254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Organoselenium chemistry has become a significant field due to its role in synthesizing numerous biologically active and therapeutic compounds. In early phase, researchers focused on designing organoselenium compounds with antioxidant properties and were quite successful. In last two decades, synthetic chemists shifted their focus toward synthesis of organoselenium compounds with biological properties, moving beyond their traditional antioxidant properties. The review includes synthesis and study of organo-selenium compounds as anticancer, antimicrobial, antiviral, antidiabetic, antithyroid, anti-inflammatory therapies, contributing to disease treatment. This review covers the synthesis and medicinal applications of synthetic organoselenium compounds over the past 10 years, thus making it a valuable resource for researchers in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Ritu Mamgain
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Garima Mishra
- Department of Chemistry, Western Illinois University-Quad Cities, Moline, IL, USA
| | - Saumya Kriti
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Fateh V Singh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| |
Collapse
|
2
|
Badshah G, Gomes CMB, Ali S, Luz EQ, Silvério GL, Santana FS, Seckler D, Paixão DB, Schneider PH, Rampon DS. Palladium-Catalyzed Direct Selanylation of Chalcogenophenes and Arenes Assisted by 2-(Methylthio)amide. J Org Chem 2023; 88:14033-14047. [PMID: 37712931 DOI: 10.1021/acs.joc.3c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The direct and selective conversion of a C-H bond into a C-Se bond remains a significant challenge, which is even more intricate with substrates having an innate regioselectivity under several reaction conditions, such as chalcogenophenes. We overrode their selectivity toward selanylation using palladium, copper, and the 2-(methylthio)amide directing group. This chelation-assisted direct selanylation was also suitable for mono and double ortho functionalization of arenes. The mechanistic studies indicate high-valent Pd(IV) species in the catalytic cycle, a reversible C-H activation step, and Cu(II) as a sequestering agent for organoselenide byproducts.
Collapse
Affiliation(s)
- Gul Badshah
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Carla M B Gomes
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Sher Ali
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Eduardo Q Luz
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Gabriel L Silvério
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Francielli S Santana
- Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-990, Paraná, Brazil
| | - Diego Seckler
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| | - Douglas B Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Paulo H Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Daniel S Rampon
- Laboratory of Polymers and Catalysis(LaPoCa),Department of Chemistry, Federal University of Paraná, P.O. Box 19061, Curitiba 81531-980, Paraná, Brazil
| |
Collapse
|
3
|
Kour J, Khajuria P, Verma PK, Kapoor N, Kumar A, Sawant SD. Selective Synthesis of Bis-Heterocycles via Mono- and Di-Selenylation of Pyrazoles and Other Heteroarenes. ACS OMEGA 2022; 7:13000-13009. [PMID: 35474812 PMCID: PMC9026074 DOI: 10.1021/acsomega.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The insertion of selenium was achieved in the form of mono-selenides and di-selenides for the preparation of novel bis-heterocyclic compounds. This method is more general and provides scaffold diversity with high yields of products. The concentration-dependent mono- and di-selenylation reaction selectivity was achieved using SeO2 as an efficient selenylating reagent.
Collapse
Affiliation(s)
- Jaspreet Kour
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pratiksha Khajuria
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Praveen Kumar Verma
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- School
of Advanced Chemical Sciences, Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Neharika Kapoor
- Quality
Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amit Kumar
- Quality
Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sanghapal D. Sawant
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
4
|
Amosova SV, Filippov AA, Makhaeva NA, Albanov AI, Potapov VA. Regio- and stereoselective synthesis of new ensembles of diversely functionalized 1,3-thiaselenol-2-ylmethyl selenides by a double rearrangement reaction. Beilstein J Org Chem 2020; 16:515-523. [PMID: 32273912 PMCID: PMC7113545 DOI: 10.3762/bjoc.16.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/09/2020] [Indexed: 01/31/2023] Open
Abstract
The reaction of 2-(bromomethyl)-1,3-thiaselenole with potassium selenocyanate proceeded via a rearrangement with ring expansion, leading to a six-membered 2,3-dihydro-1,4-thiaselenin-2-yl selenocyanate (kinetic product) which in turn underwent rearrangement with ring contraction to a 1,3-thiaselenol-2-ylmethyl selenocyanate (thermodynamic product). These rearrangements occurred by a nucleophilic attack of the selenocyanate anion at two different carbon atoms of the seleniranium intermediate. The efficient regioselective synthesis of alkyl, allyl, 2-propynyl, benzyl, 4-fluorobenzyl, and 2-pyridinylmethyl 1,3-thiaselenol-2-ylmethyl selenides was developed based on the generation of sodium 1,3-thiaselenol-2-ylmethylselenolate from 1,3-thiaselenol-2-ylmethyl selenocyanate or bis(1,3-thiaselenol-2-ylmethyl) diselenide followed by nucleophilic substitution reactions. Sodium 1,3-thiaselenol-2-ylmethylselenolate underwent nucleophilic addition to alkyl propiolates in a regio- and stereoselective manner affording 1,3-thiaselenol-2-ylmethyl vinyl selenides in high yields predominantly with Z-configuration. Not a single representative of the 1,3-thiaselenol-2-ylmethyl selenide scaffold has been previously described in the literature.
Collapse
Affiliation(s)
- Svetlana V Amosova
- A. E. Favorsky Irkutsk Institute of Chemistry, SD RAS, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
| | - Andrey A Filippov
- A. E. Favorsky Irkutsk Institute of Chemistry, SD RAS, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
| | - Nataliya A Makhaeva
- A. E. Favorsky Irkutsk Institute of Chemistry, SD RAS, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
| | - Alexander I Albanov
- A. E. Favorsky Irkutsk Institute of Chemistry, SD RAS, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
| | - Vladimir A Potapov
- A. E. Favorsky Irkutsk Institute of Chemistry, SD RAS, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
| |
Collapse
|
5
|
Ma W, Kaplaneris N, Fang X, Gu L, Mei R, Ackermann L. Chelation-assisted transition metal-catalysed C–H chalcogenylations. Org Chem Front 2020. [DOI: 10.1039/c9qo01497g] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in C–S and C–Se formationsviatransition metal-catalyzed C–H functionalization utilizing directing groups to control the site-selectivity.
Collapse
Affiliation(s)
- Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu
- P. R. China
| | - Nikolaos Kaplaneris
- Institute fuer Organische und Biomolekular Chemie
- Georg-August-Universitaet Goettingen
- 37077 Goettingen
- Germany
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu
- P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu
- P. R. China
| | - Ruhuai Mei
- College of Pharmacy and Biological Engineering Chengdu University
- Chengdu
- P. R. China
| | - Lutz Ackermann
- Institute fuer Organische und Biomolekular Chemie
- Georg-August-Universitaet Goettingen
- 37077 Goettingen
- Germany
| |
Collapse
|