1
|
Chen J, Frempong KEB, Ding P, He G, Zhou Y, Kuang M, Wei Y, Zhou J. Plant polyphenol surfactant construction with strong surface activity and chelation properties as efficient decontamination of UO 22+ on cotton fabric. Int J Biol Macromol 2024; 254:127451. [PMID: 37871720 DOI: 10.1016/j.ijbiomac.2023.127451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Chemically synthesized surfactants have promising applications in the treatment of uranium, however, their hazardous environmental effects, non-biodegradability, and numerous drawbacks prevent them from being widely used in practice. Herein, we successfully synthesized a green chelating and foaming integrated surfactant (BTBS) by Mannich reaction and acylation of bayberry tannin for the effective removal of UO22+ from aqueous environments or solid surfaces. The as-prepared surfactant was systematically characterized by FT-IR, showing that the hydrophobic groups were successfully grafted onto tannin. The modified material showed better foaming and emulsifying properties, which proved this method could improve the amphiphilicity of tannin. Moreover, for the first time, a foam fractionation method in conjunction with a tannin-based surfactant was applied for UO22+ removal from water. This surfactant was used as a co-surfactant and could readily remove 90 % of UO22+ (20 mg L-1) from water. The removal of UO22+ could be completed in a short time (30 min), and the maximum adsorption capacity was determined as 175.9 mg g-1. This surfactant can also be used for efficient decontamination of uranium-contaminated cotton cloth with a high removal rate of 94.55 %. In addition, the mechanism studies show that the adsorption of BTBS for UO22+ can be mainly attributed to a chelating mechanism between UO22+ and the adjacent phenolic hydroxyls. The novel biomass-derived BTBS with advantages such as high capture capacity, environmental friendliness, and cost-effectiveness suggests that it plays an important role in the remediation of radionuclide pollution.
Collapse
Affiliation(s)
- Jialang Chen
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Kwame Eduam Baiden Frempong
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Pingping Ding
- The Collelge of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China
| | - Guiqiang He
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Yan Zhou
- Mianyang Central Hospital, NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang, Sichuan 621000, PR China
| | - Meng Kuang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan 455000, PR China
| | - Yanxia Wei
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Jian Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
2
|
Banerjee S, Kundu A, Dhak P. Bioremediation of uranium from waste effluents using novel biosorbents: a review. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08304-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Dayem SMAE. Studies for Ultimate Uranium Separation from Its Low-Content Carbonate Leachate Solutions by Ion Flotation. RADIOCHEMISTRY 2022; 64:193-202. [DOI: 10.1134/s1066362222020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 09/01/2023]
|
4
|
Hogan DE, Stolley RM, Boxley C, Amistadi MK, Maier RM. Removal of uranium from contaminated groundwater using monorhamnolipids and ion flotation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113835. [PMID: 34600421 PMCID: PMC8579952 DOI: 10.1016/j.jenvman.2021.113835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Mining of uranium for defense-related purposes has left a substantial legacy of pollution that threatens human and environmental health. Contaminated waters in the arid southwest are of particular concern, as water resource demand and water scarcity issues become more pronounced. The development of remediation strategies to treat uranium impacted waters will become increasingly vital to meet future water needs. Ion flotation is one technology with the potential to address legacy uranium contamination. The green biosurfactant rhamnolipid has been shown to bind uranium and act as an effective collector in ion flotation. In this study, uranium contaminated groundwater (∼440 μg L-1 U) from the Monument Valley processing site in northeast Arizona was used as a model solution to test the uranium removal efficacy of ion flotation with biosynthetic (bio-mRL) and three synthetic monorhamnolipids with varying hydrophobic chain lengths: Rha-C10-C10, Rha-C12-C12, and Rha-C14-C14. At the groundwater's native pH 8, and at an adjusted pH 7, no uranium was removed from solution by any collector. However, at pH 6.5 bio-mRL and Rha-C10-C10 removed 239.2 μg L-1 and 242.4 μg L-1 of uranium, respectively. By further decreasing the pH to 5.5, bio-mRL was able to reduce the uranium concentration to near or below the Environmental Protection Agency maximum contaminant level of 30 μg L-1. For the Rha-C12-C12 and Rha-C14-C14 collector ligands, decreasing the pH to 7 or below reduced the foam stability and quantity, such that these collectors were not suitable for treating this groundwater. To contextualize the results, a geochemical analysis of the groundwater was conducted, and a consideration of uranium speciation is described. Based on this study, the efficacy of monorhamnolipid-based ion flotation in real world groundwater has been demonstrated with suitable solution conditions and collectors identified.
Collapse
Affiliation(s)
- David E Hogan
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Ryan M Stolley
- GlycoSurf, LLC, 825 N 300 W, Suite WA011, Salt Lake City, UT, 84103, USA.
| | - Chett Boxley
- GlycoSurf, LLC, 825 N 300 W, Suite WA011, Salt Lake City, UT, 84103, USA.
| | - Mary Kay Amistadi
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Raina M Maier
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Wu M, Ding L, Liao J, Zhang Y, Zhu W. Preparation of novel porous Al 2O 3-SiO 2nanocomposites via solution-freeze-drying-calcination method for the efficient removal of uranium in solution. NANOTECHNOLOGY 2021; 33:095705. [PMID: 34814117 DOI: 10.1088/1361-6528/ac3c7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
In this work, the efficient extraction of uranium in solution using Al2O3-SiO2-T was reported. Kinetics and isotherm models indicated that the removal process of uranium on Al2O3-SiO2-T accorded with pseudo-second-order kinetic model and Langmuir isotherm model, which showed that the adsorption process was a uniform mono-layer chemical behavior. The maximum adsorption capacity of Al2O3-SiO2-T reached 738.7 mg g-1, which was higher than AlNaO6Si2(349.8 mg g-1) and Al2O3-SiO2-NT (453.1 mg g-1), indicating that the addition of template could effectively improve the adsorption performance of Al2O3-SiO2to uranium. Even after five cycles of adsorption-desorption, the removal percentage of uranium on Al2O3-SiO2-T remained 96%. Besides, the extraction efficiency of uranium on Al2O3-SiO2-T was 72.5% in simulated seawater, which suggested that the Al2O3-SiO2-T was expected to be used for uranium extraction from seawater. Further, the interaction mechanism between Al2O3-SiO2-T and uranium species was studied. The results showed that the electrostatic interaction and complexation played key roles in the adsorption process of Al2O3-SiO2-T to uranium.
Collapse
Affiliation(s)
- Maoling Wu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Ling Ding
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, People's Republic of China
| |
Collapse
|
6
|
Synthesis of Gemini Cationic Surfactant for proficient extraction of uranium (VI) from sulfuric acid solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Preparation of amino-functionalized starch-based adsorbent and its adsorption behavior for uranyl ions. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07733-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Zhu M, Liu L, Feng J, Dong H, Zhang C, Ma F, Wang Q. Efficient uranium adsorption by amidoximized porous polyacrylonitrile with hierarchical pore structure prepared by freeze-extraction. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115304] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Du R, Zhang X, Li M, Wu X, Liu Y, Jiang T, Chen C, Peng Y. Leaching of low permeable sandstone uranium ore using auxiliary materials: anionic surfactants. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06793-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Mahmoud MR, Soliman MA, Rashad GM. Competitive foam separation of rare earth elements from aqueous solutions using a cationic collector. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2018.1546740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mamdoh R. Mahmoud
- Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Egypt
| | | | - Ghada M. Rashad
- Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
11
|
Soliman MA, Rashad GM, Mahmoud MR. Organo-modification of montmorillonite for enhancing the adsorption efficiency of cobalt radionuclides from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10398-10413. [PMID: 30767104 DOI: 10.1007/s11356-019-04478-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Montmorillonite clay was organically modified with thoron (TH) and was employed as an adsorbent for removal of cobalt(II) radionuclides from aqueous solutions. Batch adsorption experiments, under several operational parameters such as pH, contact time, initial adsorbate concentration, adsorbent dosage, ionic strength, and temperature, were conducted to determine the optimum conditions for efficient removal of cobalt(II) radionuclides. The obtained data showed that almost complete removals were achieved for cobalt(II) at pH values ≥ 3.5 using TH-modified montmorillonite (TMM), while only 63% were obtained by unmodified clay at pH ≥ 5.4. Adsorption kinetic data of cobalt(II) were better fitted by the pseudo-second order kinetic model and its adsorption rate was controlled by film diffusion. Both Langmuir and Freundlich models had the ability to well describe the equilibrium data of cobalt(II) radionuclides at the studied temperatures. The adsorption capacity of TMM (0.85 mmol/g) was found to be not only nine times that of unmodified montmorillonite (0.097 mmol/g), but also higher than those reported in literature using various unmodified and modified clays. Thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were calculated. Among the examined desorbing agents, both Al3+ and EDTA were succeeded to desorb most of cobalt(II) radionuclides (desorption % ~ 90%) loaded onto TMM. The results of this study clarified that TMM can be considered as an effective adsorbent for removal of cobalt(II) radionuclides from aqueous solutions.
Collapse
Affiliation(s)
- Mohamed A Soliman
- Egypt Second Research Reactor, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Ghada M Rashad
- Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Mamdoh R Mahmoud
- Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt.
| |
Collapse
|
12
|
Yu S, Wang X, Ning S, Chen Z, Wang X. Highly efficient carbonaceous nanofiber/layered double hydroxide nanocomposites for removal of U(VI) from aqueous solutions. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2018-3061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The three-dimensional (3D) carbonaceous nanofiber and Ni-Al layered double hydroxide (CNF/LDH) nanocomposite was successfully prepared by a facile one-step hydrothermal methodology. Characterization of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), XRD, and Fourier transformed infrared spectroscopy (FTIR) provided a demonstration that the modified CNF/LDH nanocomposite possessed abundant functional groups, for instance, metal-oxygen surface bonding sites (Ni–O as well as Al–O) and free-metal surface bonding sites (C–O, C–O–C, as well as O–C=O). The elimination of representative radionuclide (i.e. U(VI)) on the CNF/LDH nanocomposite from aqueous solutions was explored as a key function of pH, ionic strength, contact time, reaction temperature as well as radionuclide preliminary concentrations with the use of the batch methodology. As revealed by the findings, the sorption of radionuclides on CNF/LDH nanocomposite adhered to the pseudo-second-order kinetic model as well as Langmuir model. The maximum elimination capacity of U(VI) amounted to be 0.7 mmol/g. The independent of ionic strength shed light on the fact that inner-sphere surface complexation mainly overpowered radionuclide uptake by the CNF/LDH nanocomposite, which was further verified through the combination of FTIR and XPS spectral analyses. The abovementioned analyses shed light on the fact that the CNF/LDH nanocomposite can be regarded as a latent material to preconcentration radionuclides for environmental remediation.
Collapse
Affiliation(s)
- Shuqi Yu
- School of Resources, Environment and Materials , Guangxi University , Nanning 530004 , P.R. China
| | - Xiangxue Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , P.R. China
| | - Shunyan Ning
- School of Resources, Environment and Materials , Guangxi University , Nanning 530004 , P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , P.R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , P.R. China , Tel. (Fax): +86-10-61772890
| |
Collapse
|