1
|
Son M, Mehra P, Nguyen FT, Jin X, Koman VB, Gong X, Lee MA, Bakh NA, Strano MS. Molecular Recognition and In Vivo Detection of Temozolomide and 5-Aminoimidazole-4-carboxamide for Glioblastoma Using Near-Infrared Fluorescent Carbon Nanotube Sensors. ACS NANO 2023; 17:240-250. [PMID: 36524700 DOI: 10.1021/acsnano.2c07264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There is a pressing need for sensors and assays to monitor chemotherapeutic activity within the human body in real time to optimize drug dosimetry parameters such as timing, quantity, and frequency in an effort to maximize efficacy while minimizing deleterious cytotoxicity. Herein, we develop near-infrared fluorescent nanosensors based on single walled carbon nanotubes for the chemotherapeutic Temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide using Corona Phase Molecular Recognition as a synthetic molecular recognition technique. The resulting nanoparticle sensors are able to monitor drug activity in real-time even under in vivo conditions. Sensors can be engineered to be biocompatible by encapsulation in poly(ethylene glycol) diacrylate hydrogels. Selective detection of TMZ was demonstrated using U-87 MG human glioblastoma cells and SKH-1E mice with detection limits below 30 μM. As sensor implants, we show that such systems can provide spatiotemporal therapeutic information in vivo, as a valuable tool for pharmacokinetic evaluation. Sensor implants are also evaluated using intact porcine brain tissue implanted 2.1 cm below the cranium and monitored using a recently developed Wavelength-Induced Frequency Filtering technique. Additionally, we show that by taking the measurement of spatial and temporal analyte concentrations within each hydrogel implant, the direction of therapeutic flux can be resolved. In all, these types of sensors enable the real time detection of chemotherapeutic concentration, flux, directional transport, and metabolic activity, providing crucial information regarding therapeutic effectiveness.
Collapse
Affiliation(s)
- Manki Son
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Punit Mehra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
2
|
Koman VB, Bakh NA, Jin X, Nguyen FT, Son M, Kozawa D, Lee MA, Bisker G, Dong J, Strano MS. A wavelength-induced frequency filtering method for fluorescent nanosensors in vivo. NATURE NANOTECHNOLOGY 2022; 17:643-652. [PMID: 35637357 DOI: 10.1038/s41565-022-01136-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Fluorescent nanosensors hold the potential to revolutionize life sciences and medicine. However, their adaptation and translation into the in vivo environment is fundamentally hampered by unfavourable tissue scattering and intrinsic autofluorescence. Here we develop wavelength-induced frequency filtering (WIFF) whereby the fluorescence excitation wavelength is modulated across the absorption peak of a nanosensor, allowing the emission signal to be separated from the autofluorescence background, increasing the desired signal relative to noise, and internally referencing it to protect against artefacts. Using highly scattering phantom tissues, an SKH1-E mouse model and other complex tissue types, we show that WIFF improves the nanosensor signal-to-noise ratio across the visible and near-infrared spectra up to 52-fold. This improvement enables the ability to track fluorescent carbon nanotube sensor responses to riboflavin, ascorbic acid, hydrogen peroxide and a chemotherapeutic drug metabolite for depths up to 5.5 ± 0.1 cm when excited at 730 nm and emitting between 1,100 and 1,300 nm, even allowing the monitoring of riboflavin diffusion in thick tissue. As an application, nanosensors aided by WIFF detect the chemotherapeutic activity of temozolomide transcranially at 2.4 ± 0.1 cm through the porcine brain without the use of fibre optic or cranial window insertion. The ability of nanosensors to monitor previously inaccessible in vivo environments will be important for life-sciences research, therapeutics and medical diagnostics.
Collapse
Affiliation(s)
- Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manki Son
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daichi Kozawa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Center for Physics and Chemistry of Living Systems, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|