Vasylyeva H, Mironyuk I, Strilchuk M, Mayer K, Dallas L, Tryshyn V, Maliuk I, Hryhorenko M, Zhukov O, Savka K. Age dating of liquid
90Sr-
90Y sources.
Appl Radiat Isot 2023;
200:110906. [PMID:
37451148 DOI:
10.1016/j.apradiso.2023.110906]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
In the context of age dating of 90Sr, the selective adsorption of zirconium ions from the mixture with strontium and yttrium by adsorbents based on TiO2 with a chemically modified surface was investigated. The general features of the separation process of strontium, yttrium, and zirconium in batch conditions were determined. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to analyze the initial and residual concentrations of the studied cations. Separation of 90Zr and 90Sr from a liquid source containing 90Sr-90Y using adsorbents based on TiO2 was performed for the first time. The ratio of 90Zr/90Sr was measured, and the age of liquid 90Sr-90Y sources was determined. In addition, we studied the age dating of 90Sr-90Y sources using a combination of liquid-scintillation counting of 90Sr and ICP-MS measurement. The results of both methods - the method of age-dating with the chemical separation of isotopes and the combination of LSC and ICP-MS analysis - agree very well and thus serve for cross-validation. Moreover, the combination of the two methods increases the confidence in the age-dating results of 90Sr-90Y sources.
Collapse