1
|
Ma C, Zhang M, Teng F, Zheng W, Mi Y. Preliminary Exploration of the Biophysical Mechanisms of Pulsed Magnetic Field- Induced Cell Permeabilization. IEEE Trans Nanobioscience 2024; 23:482-490. [PMID: 38625761 DOI: 10.1109/tnb.2024.3385413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Pulsed magnetic field treatment can enhance cell membrane permeability, allowing large molecular substances that normally cannot pass through the cell membrane to enter the cell. This research holds significant prospects for biomedical applications. However, the mechanism underlying pulsed magnetic field-induced cell permeabilization remains unclear, impeding further progress in research related to pulsed magnetic field. Currently, hypotheses about the mechanism are struggling to explain experimental results. Therefore, this study developed a parameter-adjustable pulsed magnetic field generator and designed experiments. Starting from the widely accepted hypothesis of "induced electric fields by pulsed magnetic field," we conducted a preliminary exploration of the biophysical mechanisms underlying pulsed magnetic field-induced cell permeabilization. Finally, we have arrived at an intriguing conclusion: under the current technical parameters, the impact of the pulsed magnetic field itself is the primary factor influencing changes in cell membrane permeability, rather than the induced electric field. This conclusion holds significant implications for understanding the biophysical mechanisms behind pulsed magnetic field therapy and its potential biomedical applications.
Collapse
|
2
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
3
|
Kranjc M, Polajžer T, Novickij V, Miklavčič D. Determination of the Impact of High-Intensity Pulsed Electromagnetic Fields on the Release of Damage-Associated Molecular Pattern Molecules. Int J Mol Sci 2023; 24:14607. [PMID: 37834054 PMCID: PMC10572873 DOI: 10.3390/ijms241914607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by an externally applied pulsed magnetic field. Recently, HI-PEMF has been successfully used in the transfer of plasmid DNA and siRNA in vivo, with no or minimal infiltration of immune cells. In addition to gene electrotransfer, treatment with HI-PEMF has also shown potential for electrochemotherapy, where activation of the immune response contributes to the treatment outcome. The immune response can be triggered by immunogenic cell death that is characterized by the release of damage-associated molecular patterns (DAMPs) from damaged or/and dying cells. In this study, the release of the best-known DAMP molecules, i.e., adenosine triphosphate (ATP), calreticulin and high mobility group box 1 protein (HMBG1), after HI-PEMF treatment was investigated in vitro on three different cell lines of different tissue origin and compared with conventional electroporation treatment parameters. We have shown that HI-PEMF by itself does not cause the release of HMGB1 or calreticulin, whereas the release of ATP was detected immediately after HI-PEMF treatment. Our results indicate that HI-PEMF treatment causes no to minimal release of DAMP molecules, which results in minimal/limited activation of the immune response.
Collapse
Affiliation(s)
- Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (M.K.); (T.P.)
| | - Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (M.K.); (T.P.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Faculty of Electronics, Vilnius Gediminas Technical University, Plytinės g. 27, 10105 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (M.K.); (T.P.)
| |
Collapse
|
4
|
Morgese F, De Feudis F, Balercia P, Berardi R. Potential dual synergy between electrochemotherapy and sequence of immunotherapies in metastatic melanoma: A case report. Mol Clin Oncol 2023; 18:8. [PMID: 36761389 PMCID: PMC9905651 DOI: 10.3892/mco.2023.2604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Immune checkpoint inhibitors have changed the natural history of advanced melanoma. Despite this, a notable proportion of patients immediately relapse or develop resistance during immunotherapy, especially with the appearance of superficial metastases and consequently with a dramatic impact on clinical outcomes. Local treatment by electrochemotherapy (ECT), parallel to regional control with palliative aim, seems to release neoantigens potentially determining a significant systemic anticancer immune reactivation. The present study reported a case of a patient with metastatic melanoma receiving Pembrolizumab, electrochemotherapy and then Ipilimumab for in-transit and finally locoregional lymph nodes and distant bone metastases with experience of clinic-radiological remission. Specifically, the present patient progressed during adjuvant treatment with in-transit metastases on the scalp; he underwent two cycle of ECT obtaining partial and then unexpected and very fast nearly complete response with the Ipilimumab treatment. Concomitantly, he developed grade 4 endocrine adverse events (hypophysitis and diabetes mellitus type I) as immune-related toxicities. At 12 months from ECT the patient is in ECOG Performance Status 0 and he has resumed a regular social life. In our experience, ECT in two administrations increased and accelerated the response of Ipilimumab. The present confirmed its promising contribution in inducing a powerful immune response in order to overcome primary or acquired resistance to immune checkpoint inhibitors such as anti-programmed death antigen-1 drugs.
Collapse
Affiliation(s)
- Francesca Morgese
- Department of Internal Medicine, Oncological Clinic, University Hospitals of Ancona, I-60126 Ancona, Italy
| | - Francesco De Feudis
- Department of Neurological Sciences, Division of Maxillofacial Surgery, University Hospitals of Ancona, I-60126 Ancona, Italy
| | - Paolo Balercia
- Department of Neurological Sciences, Division of Maxillofacial Surgery, University Hospitals of Ancona, I-60126 Ancona, Italy
| | - Rossana Berardi
- Department of Internal Medicine, Oncological Clinic, University Hospitals of Ancona, I-60126 Ancona, Italy
| |
Collapse
|
5
|
Kranjc M, Dermol-Černe J, Potočnik T, Novickij V, Miklavčič D. High-Intensity Pulsed Electromagnetic Field-Mediated Gene Electrotransfection In Vitro. Int J Mol Sci 2022; 23:ijms23179543. [PMID: 36076938 PMCID: PMC9455820 DOI: 10.3390/ijms23179543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
A high-intensity pulsed electromagnetic field (HI-PEMF) is a non-invasive and non-contact delivery method and may, as such, have an advantage over gene electrotransfer mediated by conventional electroporation using contact electrodes. Due to the limited number of in vitro studies in the field of gene electrotransfection by HI-PEMF, we designed experiments to investigate and demonstrate the feasibility of such a technique for the non-viral delivery of genetic material into cells in vitro. We first showed that HI-PEMF causes DNA adsorption to the membrane, a generally accepted prerequisite step for successful gene electrotransfection. We also showed that HI-PEMF can induce gene electrotransfection as the application of HI-PEMF increased the percentage of GFP-positive cells for two different combinations of pDNA size and concentration. Furthermore, by measuring the uptake of larger molecules, i.e., fluorescently labelled dextrans of three different sizes, we showed endocytosis to be a possible mechanism for introducing large molecules into cells by HI-PEMF.
Collapse
Affiliation(s)
- Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
6
|
High-Intensity Low Frequency Pulsed Electromagnetic Fields Treatment Stimulates Fin Regeneration in Adult Zebrafish—A Preliminary Report. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Low-Intensity electromagnetic fields (LI-PEMFs) are known to induce a trophic stimulus on bone tissue and therefore have been largely used for the treatment of several musculoskeletal disorders. High intensity (HI) PEMFs add interesting features to bio-stimulation such as electroporation, a phenomenon characterized by transient increased cell permeabilization to molecules, and diamagnetism, a water-repulsive effect based on the diamagnetic properties of water and transmembrane ions gradients. Despite the rapid evolution of technology, the biological mechanisms underlying it are still poorly understood. In order to evaluate the effectiveness of this particular stimulation, HI LF-PEMFs were used to stimulate the caudal fin rays of adult zebrafish. Actually, the zebrafish fin regeneration is a simple, well understood, and widely adopted model for studying bone regeneration. A controlled amputation fin experiment was then conducted. Regenerated bone matrix of fin rays was dyed with calcein and then analysed under fluorescence microscopy. Both the length and the area of regenerated fin’s rays treated with HI LF-PEMFs resulted significantly increased when compared with non-treated.
Collapse
|
7
|
Duan Y, Wu X, Gong Z, Guo Q, Kong Y. Pathological impact and medical applications of electromagnetic field on melanoma: A focused review. Front Oncol 2022; 12:857068. [PMID: 35936711 PMCID: PMC9355252 DOI: 10.3389/fonc.2022.857068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Electromagnetic Field (EMF) influences melanoma in various ways. EMF can be classified into extremely low-frequency electromagnetic field, low-frequency magnetic field, static moderate magnetic field, strong electromagnetic field, alternating magnetic field, and magnetic nanoparticles. Each type of EMF influences melanoma development differently, and the detailed influence of each specific type of EMF on melanoma is reviewed. Furthermore, EMF influences melanoma cell polarity and hence affects drug uptake. In this review, the impacts of EMF on the effectiveness of drugs used to treat melanoma are listed according to drug types, with detailed effects according to the types of EMF and specific melanoma cell lines. EMF also impacts clinical therapies of melanoma, including localized magnetic hyperthermia, focalized thermotherapy, proton radiation treatment, nanostructure heating magnetic hyperthermia, radiation therapy, Polycaprolactone-Fe3O4 fiber mat-based bandage, and optune therapy. Above all, EMF has huge potential in melanoma treatment.
Collapse
Affiliation(s)
- Yunxiao Duan
- Astronomy Department, Wellesley College, Wellesley, MA, United States
| | - Xiaowen Wu
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Ziqi Gong
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Qian Guo
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Yan Kong
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
- *Correspondence: Yan Kong,
| |
Collapse
|
8
|
Chiaramello E, Fiocchi S, Bonato M, Gallucci S, Benini M, Tognola G, Ravazzani P, Parazzini M. Gold nanoparticles as enablers of cell membrane permeabilization by time-varying magnetic field: influence of distance and geometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4723-4726. [PMID: 36086609 DOI: 10.1109/embc48229.2022.9871079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study is based on the quantification of the influence of the presence of gold nanoparticles (Au NPs), of their geometry and their distance from cell membrane during time-varying electromagnetic fields cell membrane permeabilization on the pores opening dynamics. Results showed that the combined use of Au NPs and time-varying magnetic field can improve significantly the permeabilization of cell membrane. The presence of Au NPs allowed to reach transmembrane potential values enabling the cell membrane permeabilization only when placed at very short distance, equal to 20 nm. Both geometry and variability of the positioning in proximity of the cell membrane showed a strong influence on the probability of enabling pores opening. Clinical Relevance- This study provides a better comprehension about the mechanisms, still not completely understood, underlying cell membrane permeabilization by combining Au NPs and time-varying magnetic fields.
Collapse
|
9
|
Cabıoğlu MT, Aslan EL, Karabey SZ, Derdinne GG, Akyüz Ö. Effects of Bioresonance Application in Mice with Depressive-Like Behavior. Bull Exp Biol Med 2022; 173:326-329. [DOI: 10.1007/s10517-022-05543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 10/17/2022]
|
10
|
Das R, Langou S, Le TT, Prasad P, Lin F, Nguyen TD. Electrical Stimulation for Immune Modulation in Cancer Treatments. Front Bioeng Biotechnol 2022; 9:795300. [PMID: 35087799 PMCID: PMC8788921 DOI: 10.3389/fbioe.2021.795300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is becoming a very common treatment for cancer, using approaches like checkpoint inhibition, T cell transfer therapy, monoclonal antibodies and cancer vaccination. However, these approaches involve high doses of immune therapeutics with problematic side effects. A promising approach to reducing the dose of immunotherapeutic agents given to a cancer patient is to combine it with electrical stimulation, which can act in two ways; it can either modulate the immune system to produce the immune cytokines and agents in the patient's body or it can increase the cellular uptake of these immune agents via electroporation. Electrical stimulation in form of direct current has been shown to reduce tumor sizes in immune-competent mice while having no effect on tumor sizes in immune-deficient mice. Several studies have used nano-pulsed electrical stimulations to activate the immune system and drive it against tumor cells. This approach has been utilized for different types of cancers, like fibrosarcoma, hepatocellular carcinoma, human papillomavirus etc. Another common approach is to combine electrochemotherapy with immune modulation, either by inducing immunogenic cell death or injecting immunostimulants that increase the effectiveness of the treatments. Several therapies utilize electroporation to deliver immunostimulants (like genes encoded with cytokine producing sequences, cancer specific antigens or fragments of anti-tumor toxins) more effectively. Lastly, electrical stimulation of the vagus nerve can trigger production and activation of anti-tumor immune cells and immune reactions. Hence, the use of electrical stimulation to modulate the immune system in different ways can be a promising approach to treat cancer.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Sofia Langou
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Pooja Prasad
- Department of Cell and Molecular Biology, University of Connecticut, Mansfield, CT, United States
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
11
|
Chen MY, Li J, Zhang N, Waldorff EI, Ryaby JT, Fedor P, Jia Y, Wang Y. In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells. Technol Cancer Res Treat 2022; 21:15330338221124658. [PMID: 36172744 PMCID: PMC9523832 DOI: 10.1177/15330338221124658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Although there have been significant advances in research and treatments over the past decades, cancer remains a leading cause of morbidity and mortality, mostly due to resistance to standard therapies. Pulsed electromagnetic field (PEMF), a newly emerged therapeutic strategy, has been highly regarded as less invasive and almost safe to patients, is now a clinically accepted form to treat diseases including cancer. Breast and lung cancer are the most prevalent forms of human cancers, yet reported investigations on exploring regimes including PEMF are limited. Methods: Intended to examine the anti-tumor effects of a clinically accepted osteogenic PEMF and the possibility of including PEMF in breast and lung cancer treatments, we studied the effects of 2 PEMF signals (PMF1 and PMF2) on breast and lung cancer cell growth and proliferation, as well as the possible underline mechanisms in vitro and in vivo. Results: We found that both signals caused modest but significant growth inhibition (∼5%) in MCF-7 and A549 cancer cells. Interestingly, mice xenograft tumors with A549 cells treated by PEMF were smaller in sizes than controls. However, for mice with MCF-7 tumor implants, treatment with PMF1 resulted in a slight increase (2.8%) in mean tumor size, while PMF2 treated tumors showed a 9% reduction in average size. Furthermore, PEMF increased caspase 3/7 expression levels and percentage of annexin stained cells, indicating the induction of apoptosis. It also increased G0 by 8.5%, caused changes in the expression of genes associated with cell growth suppression, DNA damage, cell cycle arrest, and apoptosis. When cancer cells or xenograft tumors treated with combined PEMF and chemotherapy drugs, PEMF showed growth inhibition effect independent of cisplatin in A549 cells, but with added effect by pemetrexed for the inhibition of MCF-7 growth. Conclusion: Together, our data suggested that clinically used osteogenic PEMF signals moderately suppressed cancer cell growth and proliferation both in vitro and in vivo.
Collapse
Affiliation(s)
- Mike Y Chen
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| | - Jing Li
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | - Philip Fedor
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| | - Yongsheng Jia
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| | - Yujun Wang
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
12
|
Chiaramello E, Fiocchi S, Bonato M, Gallucci S, Benini M, Tognola G, Ravazzani P, Parazzini M. Contactless Cell Permeabilization by Time-Varying Magnetic fields: Modelling Transmembrane Potential and Mechanical Stress in in- vitro Experimental Set-Up. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4303-4305. [PMID: 34892173 DOI: 10.1109/embc46164.2021.9629570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The feasibility of using time-varying magnetic field as a contactless cells permeabilization method was demonstrated by experimental results, but the underlying mechanism is still poorly understood. In this study a numerical analysis of the transmembrane potential (TMP) at cell membranes during permeabilization by time-varying magnetic fields was proposed, and a first quantification of mechanical stress induced by the magnetic and electric fields and hypothesized to play an important role in the permeabilization mechanism was carried out. TMP values induced by typical in-vitro experimental conditions were far below the values needed for membrane permeabilization, with a strong dependence on distance of the cell from the coil. The preliminary assessment of the mechanical pressure and potential deformation of cells showed that stress values evaluated in conditions in which TMP values were too low to cause membrane permeabilization were comparable to those known to influence the pore opening mechanisms.Clinical Relevance- Results represent a significant step towards a better comprehension of the mechanism underlying cell membrane permeabilization by time-varying magnetic fields.
Collapse
|
13
|
The Impact of Extracellular Ca 2+ and Nanosecond Electric Pulses on Sensitive and Drug-Resistant Human Breast and Colon Cancer Cells. Cancers (Basel) 2021; 13:cancers13133216. [PMID: 34203184 PMCID: PMC8268418 DOI: 10.3390/cancers13133216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary The drug resistance phenomenon in cancer constantly induces problems in therapeutic protocols. Pulsed electric fields (PEFs) seem to be a promising method in drug molecule delivery. Here we have proved that electroporation supported by calcium ions can alternate the activity of drug resistance proteins. Our results indicated that MDR1 expression is not significantly modified by nanosecond electroporation in multidrug-resistant cells. However, PEF significantly inhibited MDR1 activity and cell viability when combined with calcium ions. Abstract (1) Background: Calcium electroporation (CaEP) is based on the application of electrical pulses to permeabilize cells (electroporation) and allow cytotoxic doses of calcium to enter the cell. (2) Methods: In this work, we have used doxorubicin-resistant (DX) and non-resistant models of human breast cancer (MCF-7/DX, MCF-7/WT) and colon cancer cells (LoVo, LoVo/DX), and investigated the susceptibility of the cells to extracellular Ca2+ and electric fields in the 20 ns–900 ns pulse duration range. (3) Results: We have observed that colon cancer cells were less susceptible to PEF than breast cancer cells. An extracellular Ca2+ (2 mM) with PEF was more disruptive for DX-resistant cells. The expression of glycoprotein P (MDR1, P-gp) as a drug resistance marker was detected by the immunofluorescent (CLSM) method and rhodamine-123 efflux as an MDR1 activity. MDR1 expression was not significantly modified by nanosecond electroporation in multidrug-resistant cells, but a combination with calcium ions significantly inhibited MDR1 activity and cell viability. (4) Conclusions: We believe that PEF with calcium ions can reduce drug resistance by inhibiting drug efflux activity. This phenomenon of MDR mechanism disruption seems promising in anticancer protocols.
Collapse
|
14
|
Cell transmembrane potential in contactless permeabilization by time-varying magnetic fields. Comput Biol Med 2021; 135:104587. [PMID: 34171642 DOI: 10.1016/j.compbiomed.2021.104587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although experimental results proved the feasibility of using time-varying magnetic field as a contactless cells permeabilization method, the underlying mechanism is still poorly understood. In this study a numerical analysis of the time-dependent transmembrane potential (TMP) at cell membranes during permeabilization by time-varying magnetic fields was proposed, and a first quantification of mechanical stress induced by the magnetic and electric fields, hypothesized to play an important role in the permeabilization mechanism, was carried out. METHODS Starting from the simulation of real in vitro experimental conditions, the analysis was widened quantifying the influence of pulse frequency, cell dimension and distance of the cell from the magnetic field source. The mechanical pressure on cell membrane due to the interaction between free charges and induced electric field and due to the gradient of the magnetic field was quantified in all those conditions in which the TMP values were not high enough to cause membrane permeabilization. RESULTS TMP values induced by typical in-vitro experimental conditions were far below the values needed for membrane permeabilization, with a strong dependence on pulse frequency and distance of the cell from the coil. CONCLUSION The preliminary assessment of the mechanical pressure on cell membrane showed that stress values evaluated in conditions in which TMP values were too low to cause membrane permeabilization were comparable to those known to influence the pores opening mechanisms. Results represent a significant step towards a better comprehension of the mechanism underlying cell membrane permeabilization by time-varying magnetic fields.
Collapse
|
15
|
Heydarheydari S, Firoozabadi SM, Mirnajafi-Zadeh J, Shankayi Z. Pulsed high magnetic field-induced reversible blood-brain barrier permeability to enhance brain-targeted drug delivery. Electromagn Biol Med 2021; 40:361-374. [PMID: 34043463 DOI: 10.1080/15368378.2021.1925905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present study aimed to select an effective Pulsed High Magnetic Field (PHMF) stimulation protocol that would induce the Blood-Brain Barrier's (BBB) reversible permeability to enhance brain-targeted drug delivery. PHMF was applied to the skull over the right hemisphere of 60 Wistar rats. The sham group contained other 10 rats that did not receive PHMF stimulation. The investigated parameters were repetition frequencies (0.25, 1, and 4 Hz as well as the effective low frequency combined with 10 Hz) and numbers of pulses in each train. Evans Blue Dye (EBD) uptake within the brain parenchyma was measured to select an effective PHMF stimulation protocol. BBB reversibility was evaluated by measuring EBD uptake and Gadobutrol retention, through MRI signal intensity enhancement, within brain parenchyma after exposure to the effective PHMF stimulation protocol at different time points including 0.5, 1, and 24 hours. The obtained results showed that the PHMF stimulation increased the BBB's reversible permeability; this increase was more significant for 28 pulses with 1 Hz frequency (P < .0001). Changes in EBD uptake and MRI signal intensity in the exposed side (right hemisphere) peaked within 0.5-1 hour and returned to normal levels 24 hours after exposure to the effective protocol of PHMF stimulation (28 pulses with 1 Hz frequency). The Contrast-Enhanced MRI (CE-MRI) signal intensity confirmed the changes in EBD concentration. PHMF stimulation can be used as an effective protocol for enhancing the permeability reversibly of BBB, hence considered a potential clinical approach to brain-targeted drug delivery.
Collapse
Affiliation(s)
- Sahel Heydarheydari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Firoozabadi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,R&D Center, Pars Bioelectromagnetics Co, Modares Science and Technology Park, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shankayi
- R&D Center, Pars Bioelectromagnetics Co, Modares Science and Technology Park, Tehran, Iran
| |
Collapse
|
16
|
Kranjc M, Kranjc Brezar S, Serša G, Miklavčič D. Contactless delivery of plasmid encoding EGFP in vivo by high-intensity pulsed electromagnetic field. Bioelectrochemistry 2021; 141:107847. [PMID: 34058542 DOI: 10.1016/j.bioelechem.2021.107847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by external pulsed magnetic field. Recently, HI-PEMF was applied for delivering siRNA molecules to silence enhanced green fluorescent protein (EGFP) in tumors in vivo. Still, delivered siRNA molecules were 21 base pairs long, which is 200-times smaller compared to nucleic acids such as plasmid DNA (pDNA) that are delivered in gene therapies to various targets to generate therapeutic effect. In our study, we demonstrate the use HI-PEMF treatment as a feasible noninvasive approach to achieve in vivo transfection by enabling the transport of larger molecules such as pDNA encoding EGFP into muscle and skin. We obtained a long-term expression of EGFP in the muscle and skin after HI-PEMF, in some mice even up to 230 days and up to 190 days, respectively. Histological analysis showed significantly less infiltration of inflammatory mononuclear cells in muscle tissue after the delivery of pEGFP using HI-PEMF compared to conventional gene electrotransfer. Furthermore, the antitumor effectiveness using HI-PEMF for electrotransfer of therapeutic plasmid, i.e., silencing MCAM was demonstrated. In conclusion, feasibility of HI-PEMF was demonstrated for transfection of different tissues (muscle, skin, tumor) and could have great potential in gene therapy and in DNA vaccination.
Collapse
Affiliation(s)
- Matej Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Yadegari Dehkordi S, Firoozabadi SM, Forouzandeh Moghadam M, Shankayi Z. Endocytosis induction by high-pulsed magnetic fields to overcome cell membrane barrier and improve chemotherapy efficiency. Electromagn Biol Med 2021; 40:438-445. [PMID: 33977836 DOI: 10.1080/15368378.2021.1923026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell membrane acts as a barrier to the entry of impermeable drugs into cells. Recent studies have suggested that using magnetic fields can enable molecules to overcome the cell membrane barrier. However, the mechanism of membrane permeabilization remains unclear. Therefore, we evaluated the increases in bleomycin (CT) uptake, a non-permanent chemotherapy agent, using high-pulsed magnetic fields and investigated whether endocytosis was involved in the process. This study exposed MCF-7 cells to magnetic fields (2.2 T strength, different number of 28 and 56 pulses, and frequency of 1 and 10 Hz) in order to investigate whether this approach could promote the cell-killing efficiency of bleomycin. The involvement of endocytosis as a possible mechanism was tested by exposing cells to three endocytosis inhibitors, namely chlorpromazine, genistein, and amiloride. Our results illustrated that magnetic fields, depending on their conditions, could induce different endocytosis pathways. In such conditions as 10 Hz-28 pulses, 10 Hz-56 pulses, and 1 Hz-56 pulse, clathrin-mediated endocytosis was observed. Moreover, macropinocytosis was induced by the 10 Hz magnetic field and caveolae-mediated endocytosis occurred in all the magnetic field conditions. The findings imply that high-pulsed magnetic fields generate different endocytosis pathways in the MCF-7 cells, thus increasing the efficiency of chemotherapy agents.
Collapse
Affiliation(s)
- Sajedeh Yadegari Dehkordi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shankayi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Dermol-Černe J, Pirc E, Miklavčič D. Mechanistic view of skin electroporation - models and dosimetry for successful applications: an expert review. Expert Opin Drug Deliv 2020; 17:689-704. [PMID: 32192364 DOI: 10.1080/17425247.2020.1745772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Skin electroporation is a promising treatment for transdermal drug delivery, gene electrotransfer, skin rejuvenation, electrochemotherapy, and wound disinfection. Although a considerable amount of in vitro and in vivo studies exists, the translation to clinics is not as fast as one would hope. We hypothesize the reason lies in the inadequate dosimetry, i.e. electrode configurations, pulse parameters, and pulse generators used. We suggest adequate dosimetry can be determined by mathematical modeling which would allow comparison of protocols and facilitate translation into clinics.Areas covered: We introduce the mechanisms and applications of skin electroporation, present existing mathematical models and compare the influence of different model parameters. We review electrodes and pulse generators, prototypes, as well as commercially available models.Expert opinion: The reasons for slow translation of skin electroporation treatments into clinics lie in uncontrolled and inadequate dosimetry, poor reporting rendering comparisons between studies difficult, and significant differences in animal and human skin morphology often dismissed in reports. Mathematical models enable comparison of studies, however, when the parameters of the pulses and electrode configuration are not adequately reported, as is often the case, comparisons are difficult, if not impossible. For each skin electroporation treatment, systematic studies determining optimal parameters should be performed and treatment parameters standardized.
Collapse
Affiliation(s)
- Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Miklavcic D, Novickij V, Kranjc M, Polajzer T, Haberl Meglic S, Batista Napotnik T, Romih R, Lisjak D. Contactless electroporation induced by high intensity pulsed electromagnetic fields via distributed nanoelectrodes. Bioelectrochemistry 2020; 132:107440. [DOI: 10.1016/j.bioelechem.2019.107440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
|
20
|
Sharabi S, Guez D, Daniels D, Cooper I, Atrakchi D, Liraz-Zaltsman S, Last D, Mardor Y. The application of point source electroporation and chemotherapy for the treatment of glioma: a randomized controlled rat study. Sci Rep 2020; 10:2178. [PMID: 32034261 PMCID: PMC7005896 DOI: 10.1038/s41598-020-59152-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/23/2020] [Indexed: 11/28/2022] Open
Abstract
The prognosis of Glioblastoma Multiforme patients is poor despite aggressive therapy. Reasons include poor chemotherapy penetration across the blood-brain barrier and tumor infiltration into surrounding tissues. Here we studied the effects of combined point-source electroporation (EP) and systemic chemotherapy in glioma-bearing rats. 128 rats were studied. Treatment groups were administered systemic Cisplatin/Methotrexate before EP (either 90 or 180 pulses). Control groups were treated by EP, chemotherapy, or no treatment. Tumor volumes were determined by MRI. Tumors growth rates of the EP + Methotrexate group (1.02 ± 0.77) were significantly lower (p < 0.01) than the control (5.2 ± 1.0) 1-week post treatment. No significant difference was found compared to Methotrexate (1.7 ± 0.5). Objective response rates (ORR) were 40% and 57% for the Methotrexate and EP + Methotrexate groups respectively. Tumor growth rates and ORR of the EP + Cisplatin groups (90 pulses 0.98 ± 0.2, 57%, 180 pulses 1.2 ± 0.1, 33%) were significantly smaller than the control (6.4 ± 1.0, p < 0.01, p < 0.02, 0%) and Cisplatin (3.9 ± 1.0, p < 0.04, p < 0.05, 13%) groups. No significant differences were found between the control groups. Increased survival was found in the EP + Cisplatin group, Χ2 = 7.54, p < 0.006 (Log Rank). Point-source EP with systemic chemotherapy is a rapid, minimal-invasive treatment that was found to induce significant antineoplastic effects in a rat glioma model.
Collapse
Affiliation(s)
- Shirley Sharabi
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel.
| | - David Guez
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Dianne Daniels
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Gand Faculty of Health Profession, Ono Academic College, Kiryat Ono, Israel.,Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Yael Mardor
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
21
|
Kranjc Brezar S, Kranjc M, Čemažar M, Buček S, Serša G, Miklavčič D. Electrotransfer of siRNA to Silence Enhanced Green Fluorescent Protein in Tumor Mediated by a High Intensity Pulsed Electromagnetic Field. Vaccines (Basel) 2020; 8:E49. [PMID: 32012775 PMCID: PMC7157195 DOI: 10.3390/vaccines8010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
The contactless high intensity pulsed electromagnetic field (HI-PEMF)-induced increase of cell membrane permeability is similar to conventional electroporation, with the important difference of inducing an electric field non-invasively by exposing a treated tissue to a time-varying magnetic field. Due to the limited number of studies in the field of electroporation induced by HI-PEMF, we designed experiments to explore the feasibility of such a contactless delivery technique for the gene electrotransfer of nucleic acids in tissues in vivo. By using HI-PEMF for gene electrotransfer, we silenced enhanced green fluorescent protein (EGFP) with siRNA molecules against EGFP in B16F10-EGFP tumors. Six days after the transfer, the fluorescent tumor area decreased by up to 39% as determined by fluorescence imaging in vivo. In addition, the silencing of EGFP to the same extent was confirmed at the mRNA and protein level. The results obtained in the in vivo mouse model demonstrate the potential use of HI-PEMF-induced cell permeabilization for gene therapy and DNA vaccination. Further studies are thus warranted to improve the equipment, optimize the protocols for gene transfer and the HI-PEMF parameters, and demonstrate the effects of HI-PEMF on a broader range of different normal and tumor tissues.
Collapse
Affiliation(s)
- Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
| | - Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia;
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Simon Buček
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia;
| |
Collapse
|
22
|
Abstract
Electrochemotherapy is gaining recognition as an effective local therapy that uses systemically or intratumorally injected bleomycin or cisplatin with electroporation as a delivery system that brings drugs into the cells to exert their cytotoxic effects. Preclinical work is still ongoing, testing new drugs, seeking the best treatment combination with other treatment modalities, and exploring new sets of pulses for effective tissue electroporation. The applications of electrochemotherapy are being fully exploited in veterinary oncology, where electrochemotherapy, because of its simple execution, has a relatively good cost-benefit ratio and is used in the treatment of cutaneous tumors. In human oncology, electrochemotherapy is fully recognized as a local therapy for cutaneous tumors and metastases. Its effectiveness is being explored in combination with immunomodulatory drugs. However, the development of electrochemotherapy is directed into the treatment of deep-seated tumors with a percutaneous approach. Because of the vast number of reports, this review discusses the articles published in the past 5 years.
Collapse
Affiliation(s)
- Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Kumagai M, Guo X, Wang KY, Izumi H, Tsukamoto M, Nakashima T, Tasaki T, Kurose N, Uramoto H, Sasaguri Y, Kohno K, Yamada S. Depletion of WNT10A Prevents Tumor Growth by Suppressing Microvessels and Collagen Expression. Int J Med Sci 2019; 16:416-423. [PMID: 30911276 PMCID: PMC6428976 DOI: 10.7150/ijms.26997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/06/2018] [Indexed: 01/13/2023] Open
Abstract
Background: We recently reported that WNT10A plays a pivotal role in wound healing by regulating collagen expression/synthesis, as the depletion of WNT10A dramatically delays skin ulcer formation. WNT signaling also has a close correlation with the cancer microenvironment and proliferation, since tumors are actually considered to be 'unhealing' or 'overhealing' wounds. To ascertain the in vivo regulatory functions of WNT10A in tumor growth, we examined the net effects of WNT10A depletion using Wnt10a-deficient mice (Wnt10a -/-). Methods and Results: We subjected C57BL/6J wild-type (WT) or Wnt10a -/- mice to murine melanoma B16-F10 cell transplantation. Wnt10a -/- mice showed a significantly smaller volume of transplanted melanoma as well as fewer microvessels and less collagen expression and more necrosis than WT mice. Conclusions: Taken together, our observations suggest that critical in vivo roles of Wnt10a-depleted anti-stromagenesis prevent tumor growth, in contrast with true wound healing/scarring.
Collapse
Affiliation(s)
- Motona Kumagai
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, School of Medicine, University of Occupational and Environmental Health
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health
| | - Tamiji Nakashima
- Department of Human, Information and Life Sciences, School of Medicine, University of Occupational and Environmental Health
| | - Takashi Tasaki
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Nozomu Kurose
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health
- Laboratory of Pathology, Fukuoka Tokushukai Hospital, Fukuoka 816-0864, Japan
| | | | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
24
|
Zakelj MN, Prevc A, Kranjc S, Cemazar M, Todorovic V, Savarin M, Scancar J, Kosjek T, Groselj B, Strojan P, Sersa G. Electrochemotherapy of radioresistant head and neck squamous cell carcinoma cells and tumor xenografts. Oncol Rep 2019; 41:1658-1668. [PMID: 30628709 PMCID: PMC6365705 DOI: 10.3892/or.2019.6960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Electrochemotherapy is an established local ablative method used for the treatment of different tumor types, including tumors of the head and neck area. Clinical studies have demonstrated a lower response rate of tumors that recur in pre-irradiated area. The aim of the present study was to explore the response of experimentally induced radioresistant cells and tumors to electrochemotherapy with cisplatin or bleomycin. The radioresistant cells (FaDu-RR) were established by fractionated irradiation of parental human squamous cell carcinoma cell line, FaDu. We compared the 2 cell lines in response to chemotherapy and electrochemotherapy with cisplatin or bleomycin in vitro and in vivo. Using specific mass spectrometry-based analytical methods we determined the difference in the uptake of chemotherapeutics in tumors after electrochemotherapy. Additionally, we compared the capacity of the cells to repair DNA double-strand breaks (DSB) after exposure to the drugs used in electrochemotherapy with the γH2AX foci resolution determined by immunofluorescence microscopy. Our results indicate radio- and cisplatin cross-resistance, confirmed with the lower response rate of radioresistant tumors after electrochemotherapy with cisplatin. On the other hand, the sensitivity to electrochemotherapy with bleomycin was similar in both cell lines and tumors. While the uptake of chemotherapeutics after electrochemotherapy was comparable in both tumor models, there was a difference between the cell lines in capacity to repair DNA DSB-the radioresistant cells had a lower level of DSB and faster DNA repair rate after exposure to both, cisplatin or bleomycin. Due to the higher complete response rate after electrochemotherapy with bleomycin than with cisplatin, we conclude that the results favor bleomycin-over cisplatin-based electrochemotherapy for treatment of radioresistant tumors and/or tumors that regrow after radiotherapy.
Collapse
Affiliation(s)
- Martina Niksic Zakelj
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Ajda Prevc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Simona Kranjc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Vesna Todorovic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Monika Savarin
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Janez Scancar
- Department of Environmental Sciences, Jozef Stefan Institute, SI‑1000 Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences, Jozef Stefan Institute, SI‑1000 Ljubljana, Slovenia
| | - Blaz Groselj
- Department of Radiation Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Primoz Strojan
- Faculty of Medicine, University of Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Esmaeili N, Friebe M. Electrochemotherapy: A Review of Current Status, Alternative IGP Approaches, and Future Perspectives. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:2784516. [PMID: 30719264 PMCID: PMC6335737 DOI: 10.1155/2019/2784516] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/20/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
The efficiency of electroporation (EP) has made it a widely used therapeutic procedure to transfer cell killing substances effectively to the target site. A lot of researches are being done on EP-based cancer treatment techniques. Electrochemotherapy (ECT) is the first EP-based application in the field of drug administration. ECT is a local and nonthermal treatment of cancer that combines the use of a medical device with pharmaceutical agents to obtain local tumor control in solid cancers. It involves the application of eight, 100µs, pulses at 1 or 5000 Hz frequency and specified electric field (V/cm) with a median duration of 25 minutes. The efficacy of chemotherapeutic drugs increases by applying short and intense electrical pulses. Several clinical studies proposed ECT as a safe and complementary curative or palliative treatment option (curative intent of 50% to 63% in the treatment of Basal Cell Carcinoma (BCC)) to treat a number of solid tumors and skin malignancies, which are not suitable for conventional treatments. It is used currently for treatment of cutaneous and subcutaneous lesions, without consideration of their histology. On the contrary, it is also becoming a practical method for treatment of internal, deep-seated tumors and tissues. A review of this method, needed instruments, alternative image-guided procedures (IGP) approaches, and future perspectives and recommendations are discussed in this paper.
Collapse
Affiliation(s)
- Nazila Esmaeili
- INKA Intelligente Katheter, Otto-von-Guericke-Universität Magdeburg, Magdenurg, Germany
| | - Michael Friebe
- INKA Intelligente Katheter, Otto-von-Guericke-Universität Magdeburg, Magdenurg, Germany
| |
Collapse
|
26
|
Novickij V, Zinkevičienė A, Valiulis J, Švedienė J, Paškevičius A, Lastauskienė E, Markovskaja S, Novickij J, Girkontaitė I. Different permeabilization patterns of splenocytes and thymocytes to combination of pulsed electric and magnetic field treatments. Bioelectrochemistry 2018; 122:183-190. [DOI: 10.1016/j.bioelechem.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
|
27
|
Yin Y, Chen P, Yu Q, Peng Y, Zhu Z, Tian J. The Effects of a Pulsed Electromagnetic Field on the Proliferation and Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Med Sci Monit 2018; 24:3274-3282. [PMID: 29775452 PMCID: PMC5987610 DOI: 10.12659/msm.907815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background A low frequency pulsed electromagnetic field (PEMF) has been confirmed to play an important role in promoting the osteogenic differentiation of human bone marrow stem cells (BMSCs). Adipose-derived stem cells (ASCs) possess some attractive characteristics for clinical application compared to BMSCs, such as abundant stem cells from lipoaspirates, faster growth, less discomfort and morbidity during surgery. ASCs can become adipocytes, osteoblasts, chondrocytes, myocytes, neurocytes, and other cell types. Thus, ASCs might be a good alternative in clinical work involving treatment with PEMF. Material/Methods Human ASCs (hASCs)were divided into a control group (without PEMF exposure) and an experimental group (PEMF for two hours per day). We examined the effect of PEMF on promoting cell proliferation and osteogenic differentiation from several aspects: CCK-8 proliferation assay, RNA extraction, qRT-PCR detection, western blotting, and immunofluorescence staining experiments. Results PEMF could promote cell proliferation of human ASCs (hASCs) at an early stage as determined by CCK-8 assay. A specific intensity (1 mT) and frequency (50 Hz) of PEMF promoted osteogenic differentiation in hASCs in alkaline phosphatase (ALP) staining experiments. In addition, bone-related gene expression increased after two weeks of PEMF exposure, the protein expression of OPN, OCN, and RUNX-2 also increased after a longer period (three weeks) of PEMF treatment as determined by western blotting and immunofluorescence staining. Conclusions We found for the first time that PMEF has a role in stimulating cell proliferation of hASCs at an early period, subsequently promoting bone-related gene expression and inducing the expression of related proteins to stimulate osteogenic differentiation.
Collapse
Affiliation(s)
- Yukun Yin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Ping Chen
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Qiang Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Yan Peng
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - ZeHao Zhu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Jing Tian
- Department of Orthopedics, Zhujiang Hospital,Southern Medical University, Haizhu, Guangzhou, China (mainland)
| |
Collapse
|
28
|
Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods – An overview. Bioelectrochemistry 2018; 120:166-182. [DOI: 10.1016/j.bioelechem.2017.12.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|
29
|
Comparable effectiveness and immunomodulatory actions of oxaliplatin and cisplatin in electrochemotherapy of murine melanoma. Bioelectrochemistry 2018; 119:161-171. [DOI: 10.1016/j.bioelechem.2017.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/17/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022]
|
30
|
Novickij V, Stanevičienė R, Vepštaitė-Monstavičė I, Gruškienė R, Krivorotova T, Sereikaitė J, Novickij J, Servienė E. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields. Front Microbiol 2018; 8:2678. [PMID: 29375537 PMCID: PMC5767227 DOI: 10.3389/fmicb.2017.02678] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/22/2017] [Indexed: 11/21/2022] Open
Abstract
Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs) (11-13 nm) capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm-1 electric field pulses (100 μs × 8) separately and in combination with two pulsed magnetic field protocols: (1) high dB/dt 3.3 T × 50 and (2) 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | | | - Rūta Gruškienė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
31
|
Meijer DKF, Geesink HJH. Favourable and Unfavourable EMF Frequency Patterns in Cancer: Perspectives for Improved Therapy and Prevention. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jct.2018.93019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Novickij V, Dermol J, Grainys A, Kranjc M, Miklavčič D. Membrane permeabilization of mammalian cells using bursts of high magnetic field pulses. PeerJ 2017; 5:e3267. [PMID: 28462057 PMCID: PMC5408723 DOI: 10.7717/peerj.3267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/02/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Cell membrane permeabilization by pulsed electromagnetic fields (PEMF) is a novel contactless method which results in effects similar to conventional electroporation. The non-invasiveness of the methodology, independence from the biological object homogeneity and electrical conductance introduce high flexibility and potential applicability of the PEMF in biomedicine, food processing, and biotechnology. The inferior effectiveness of the PEMF permeabilization compared to standard electroporation and the lack of clear description of the induced transmembrane transport are currently of major concern. METHODS The PEMF permeabilization experiments have been performed using a 5.5 T, 1.2 J pulse generator with a multilayer inductor as an applicator. We investigated the feasibility to increase membrane permeability of Chinese Hamster Ovary (CHO) cells using short microsecond (15 µs) pulse bursts (100 or 200 pulses) at low frequency (1 Hz) and high dB/dt (>106 T/s). The effectiveness of the treatment was evaluated by fluorescence microscopy and flow cytometry using two different fluorescent dyes: propidium iodide (PI) and YO-PRO®-1 (YP). The results were compared to conventional electroporation (single pulse, 1.2 kV/cm, 100 µs), i.e., positive control. RESULTS The proposed PEMF protocols (both for 100 and 200 pulses) resulted in increased number of permeable cells (70 ± 11% for PI and 67 ± 9% for YP). Both cell permeabilization assays also showed a significant (8 ± 2% for PI and 35 ± 14% for YP) increase in fluorescence intensity indicating membrane permeabilization. The survival was not affected. DISCUSSION The obtained results demonstrate the potential of PEMF as a contactless treatment for achieving reversible permeabilization of biological cells. Similar to electroporation, the PEMF permeabilization efficacy is influenced by pulse parameters in a dose-dependent manner.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Janja Dermol
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Audrius Grainys
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
33
|
Muramatsu Y, Matsui T, Deie M, Sato K. Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells. ACTA ACUST UNITED AC 2017; 31:61-68. [PMID: 28064222 DOI: 10.21873/invivo.11026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 01/21/2023]
Abstract
AIM We aimed to investigate the synergistic effects of pulsed electromagnetic field (PEMF) and doxorubicin therapy in a mouse osteosarcoma cell line (LM8 cells) in vitro. MATERIALS AND METHODS The effects of PEMF (5 mT, 200 Hz) of different durations and doxorubicin on the proliferative activity of LM8 cells were measured by the MTT assay. Apoptotic-related factors such as cell-cycle phase, mitochondrial membrane potential, and caspase 3/7 activity were investigated using 4',6-diamidino-2-phenylindole staining and apoptosis kits. Identification of intracellular signaling molecules induced by the combination was comprehensively explored using a stress and apoptosis-related protein array kit. RESULTS PEMF enhanced the inhibition of cell proliferation mediated by doxorubicin but did not affect the cell cycle, mitochondrial membrane potential, or doxorubicin-induced G2/M arrest. The combination of PEMF and doxorubicin altered a few signaling molecules. PEMF tended to reduce the doxorubicin-induced decrease of phosphorylated BAD, while reducing the increased expression of total IĸB and phosphorylated-CHK1 induced by doxorubicin. CONCLUSION Our results indicate that combination of PEMF and doxorubicin could be a novel chemotherapeutic strategy.
Collapse
Affiliation(s)
- Yoshitaka Muramatsu
- Department of Orthopaedic Surgery, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Takuya Matsui
- Department of Physiology, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Masataka Deie
- Department of Orthopaedic Surgery, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Keiji Sato
- Department of Orthopaedic Surgery, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| |
Collapse
|
34
|
Novickij V, Lastauskienė E, Švedienė J, Grainys A, Staigvila G, Paškevičius A, Girkontaitė I, Zinkevičienė A, Markovskaja S, Novickij J. Membrane Permeabilization of Pathogenic Yeast in Alternating Sub-microsecond Electromagnetic Fields in Combination with Conventional Electroporation. J Membr Biol 2017; 251:189-195. [PMID: 28238117 DOI: 10.1007/s00232-017-9951-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Recently, a novel contactless treatment method based on high-power pulsed electromagnetic fields (PEMF) was proposed, which results in cell membrane permeabilization effects similar to electroporation. In this work, a new PEMF generator based on multi-stage Marx circuit topology, which is capable of delivering 3.3 T, 0.19 kV/cm sub-microsecond pulses was used to permeabilize pathogenic yeast Candida albicans separately and in combination with conventional square wave electroporation (8-17 kV/cm, 100 μs). Bursts of 10, 25, and 50 PEMF pulses were used. The yeast permeabilization rate was evaluated using flow cytometric analysis and propidium iodide (PI) assay. A statistically significant (P < 0.05) combinatorial effect of electroporation and PEMF treatment was detected. Also the PEMF treatment (3.3 T, 50 pulses) resulted in up to 21% loss of yeast viability, and a dose-dependent additive effect with pulsed electric field was observed. As expected, increase of the dB/dt and subsequently the induced electric field amplitude resulted in a detectable effect solely by PEMF, which was not achievable before for yeasts in vitro.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania.
| | - Eglė Lastauskienė
- Department of Microbiology and Biotechnology, Vilnius University, Sauletekio al. 7, 10257, Vilnius, Lithuania
| | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos st. 2, 08412, Vilnius, Lithuania
| | - Audrius Grainys
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| | - Gediminas Staigvila
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos st. 2, 08412, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių st. 5, 08406, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių st. 5, 08406, Vilnius, Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, Žaliųjų ežerų st. 49, 08406, Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| |
Collapse
|
35
|
Vadalà M, Morales-Medina JC, Vallelunga A, Palmieri B, Laurino C, Iannitti T. Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology. Cancer Med 2016; 5:3128-3139. [PMID: 27748048 PMCID: PMC5119968 DOI: 10.1002/cam4.861] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. Available treatments are associated with numerous side effects and only a low percentage of patients achieve complete remission. Therefore, there is a strong need for new therapeutic strategies. In this regard, pulsed electromagnetic field (PEMF) therapy presents several potential advantages including non-invasiveness, safety, lack of toxicity for non-cancerous cells, and the possibility of being combined with other available therapies. Indeed, PEMF stimulation has already been used in the context of various cancer types including skin, breast, prostate, hepatocellular, lung, ovarian, pancreatic, bladder, thyroid, and colon cancer in vitro and in vivo. At present, only limited application of PEMF in cancer has been documented in humans. In this article, we review the experimental and clinical evidence of PEMF therapy discussing future perspectives in its use in oncology.
Collapse
Affiliation(s)
- Maria Vadalà
- Department of General Surgery and Surgical Specialties, Surgical Clinic, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, Surgical Clinic, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Carmen Laurino
- Department of General Surgery and Surgical Specialties, Surgical Clinic, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|