1
|
Jradi R, Marvillet C, Jeday MR. Analysis and estimation of cross-flow heat exchanger fouling in phosphoric acid concentration plant using response surface methodology (RSM) and artificial neural network (ANN). Sci Rep 2022; 12:20437. [PMID: 36443423 PMCID: PMC9705479 DOI: 10.1038/s41598-022-24689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The production of phosphoric acid by dehydrated process leads to the precipitation of unwanted insoluble salts promoting thus the crystallization fouling build-up on heat transfer surfaces of the exchangers. During the acid concentration operation, the presence of fouling in heat exchangers results in reducing the performance of this equipment, in terms of heat transfer, while increasing energy losses and damaging the apparatus. To mitigate these adverse effects of fouling, it is necessary to forecast the thermal resistance of fouling to schedule and perform exchanger cleaning. In this context, artificial neural network and response surface methodology were used to estimate thermal resistance of fouling in a cross-flow heat exchanger by using the operating data of the concentration loop. The absolute average relative deviations, mean squared errors, root mean squared errors and correlation coefficients were used as indicators error between the experimental and estimated values for both methods. The best fitted model derived from response surface methodology method was second order polynomial while the best architecture topology, for the artificial neural network method, consists of three layers: input layer with six input variables, hidden layer with six hidden neurons and an output layer with single output variable. The interactive influences of operating parameters which have significant effects on the fouling resistance were illustrated in detail. The value of correlation coefficient for the output parameter from the response surface methodology is 0.9976, indicating that the response surface methodology as an assessment methodology in estimating fouling resistance is more feasible compared with the artificial neural network approach.
Collapse
Affiliation(s)
- Rania Jradi
- Research Laboratory «Process, Energy, Environment & Electrical Systems», National Engineering School of Gabes, Gabes, Tunisia.
| | - Christophe Marvillet
- CMGPCE Laboratory, French Institute of Refrigeration (IFFI), National Conservatory of Arts and Crafts (CNAM), Paris, France
| | - Mohamed Razak Jeday
- Research Laboratory «Process, Energy, Environment & Electrical Systems», National Engineering School of Gabes, Gabes, Tunisia
| |
Collapse
|
2
|
Wang D, Hall TD, Gu T. Preliminary Proof-of-Concept Testing of Novel Antimicrobial Heat-Conducting “Metallic” Coatings Against Biofouling and Biocorrosion. Front Microbiol 2022; 13:899364. [PMID: 35847122 PMCID: PMC9279579 DOI: 10.3389/fmicb.2022.899364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
NiMo (nickel-molybdenum) and NiMo with embedded CeO2 nanoparticles (NPs; 100 nm) were tested as antimicrobial coatings (~15 μm thickness) on titanium (Ti) surfaces using an electrochemical process for heat exchanger applications onboard marine vessels. Preliminary static biofouling and biocorrosion (also known as microbiologically influenced corrosion) assessments were carried out in glass bottles using pure-culture Desulfovibrio vulgaris, a sulfate-reducing bacterium (SRB), in deoxygenated ATCC 1249 medium at 37°C, and using an alga (Chlorella vulgaris) mixed with general heterotrophic bacteria (GHB) in enriched artificial seawater at 28°C. It was found that the coating containing NiMo/CeO2 NPs were much more effective than NiMo in preventing SRB biofilm formation with an efficacy of 99% reduction in D. vulgaris sessile cells after 21 day incubation. The coating also exhibited a 50% lower corrosion current density compared to the uncoated Ti against SRB corrosion. Both NiMo and NiMo/CeO2 NP coatings achieved 99% reduction in sessile algal cells. Confocal laser scanning microscopy (CLSM) biofilm images indicated a large reduction of sessile GHB cells. The CLSM images also confirmed the biocidal kill effects of the two coatings. Unlike polymer coatings, the “metallic” coatings are heat conductive. Thus, the corrosion resistant antifouling coatings are suitable for heat exchanger applications.
Collapse
Affiliation(s)
- Di Wang
- Shenyang National Lab for Materials Science, Northeastern University, Shenyang, China
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, United States
| | | | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, United States
- *Correspondence: Tingyue Gu,
| |
Collapse
|
3
|
Barton F, Shaw S, Morris K, Graham J, Lloyd JR. Impact and control of fouling in radioactive environments. PROGRESS IN NUCLEAR ENERGY 2022. [DOI: 10.1016/j.pnucene.2022.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid. ENERGIES 2022. [DOI: 10.3390/en15093059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanofluids as heat transfer fluids have been acquiring popularity ever since their beginning. Therefore, the refrigeration research could not keep itself away from the ever-rising horizon of nanofluid applications. On the other hand, nanofluid stability remains the critical bottleneck for use. A significant reduction in nanofluids’ performance can derivate from instability phenomena. Looking to industrial applications, nanofluid long-term stability and reusability are crucial requisites. Nanoparticles’ deposits induce microchannel circuit obstruction, limiting the proper functioning of the device and negating the beneficial characteristics of the nanofluid. The aggregation and sedimentation of the particles may also determine the increased viscosity and pumping cost, and reduced thermal properties. So, there is a need to address the features of nanofluid starting from realization, evaluation, stabilization methods, and operational aspects. In this review, investigations of nanorefrigerants are summarized. In particular, a description of the preparation procedures of nanofluids was reported, followed by a deep elucidation of the mechanism of nanofluid destabilization and sedimentation, and finally, the literature results in this field were reviewed.
Collapse
|
5
|
Françolle de Almeida C, Saget M, Delaplace G, Jimenez M, Fierro V, Celzard A. Innovative fouling-resistant materials for industrial heat exchangers: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fouling of heat exchangers (HEs) has become a major concern across the industrial sector. Fouling is an omnipresent phenomenon but is particularly prevalent in the dairy, oil, and energy industries. Reduced energy performance that results from fouling represents significant operating loss in terms of both maintenance and impact on product quality and safety. In most industries, cleaning or replacing HEs are currently the only viable solutions for controlling fouling. This review examines the latest advances in the development of innovative materials and coatings for HEs that could mitigate the need for costly and frequent cleaning and potentially extend their operational life. To better understand the correlation between surface properties and fouling occurrence, we begin by providing an overview of the main mechanisms underlying fouling. We then present selected key strategies, which can differ considerably, for developing antifouling surfaces and conclude by discussing the current trends in the search for ideal materials for a range of applications. In our presentation of all these aspects, emphasis is given wherever possible to the potential transfer of these innovative surfaces from the laboratory to the three industries most concerned by HE fouling problems: food, petrochemicals, and energy production.
Collapse
Affiliation(s)
| | - Manon Saget
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations , F-59000 Lille , France
| | - Guillaume Delaplace
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations , F-59000 Lille , France
| | - Maude Jimenez
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations , F-59000 Lille , France
| | - Vanessa Fierro
- Université de Lorraine, CNRS, IJL , F-88000 Epinal , France
| | - Alain Celzard
- Université de Lorraine, CNRS, IJL , F-88000 Epinal , France
| |
Collapse
|
6
|
Affiliation(s)
- Xiaoyu Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zongwei Gan
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yuzhong Li
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|