1
|
Oh DH, Heo JW, Xia Q, Kim MS, Kim YS. Amine-crosslinked lignin for water pollution attributable to organic dye remediation: Versatile adsorbent for selective dye removal and reusability. Heliyon 2024; 10:e37497. [PMID: 39290289 PMCID: PMC11407063 DOI: 10.1016/j.heliyon.2024.e37497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Lignin, an abundant natural resource, has not been effectively utilized. In this study, the functionality of lignin was enhanced through amination to produce amine-crosslinked lignin, and its adsorption behavior toward cationic and anionic dyes was investigated. Chemical structure analysis confirmed the successful introduction of amine groups, thereby improving the molecular weight and thermal stability of the optimized amine-crosslinked lignin. Additionally, the amine-crosslinked lignin exhibited a larger specific surface area than kraft lignin, as well as excellent adsorption capacity for both anionic and cationic dyes. Furthermore, it selectively adsorbed anionic and cationic dyes depending on pH conditions. The adsorption kinetics were described using a pseudo-second-order model, and the adsorption isotherms for congo red and methyl green were determined using the Langmuir and Freundlich equations, respectively. Additionally, the reusability and adsorption efficiency of the optimized amine-crosslinked lignin were evaluated, confirming its stable and repeatable adsorption efficiency for congo red and methyl green even after five repeated cycles. The assumed adsorption mechanism was attributed to electrostatic interactions. Therefore, the successful synthesis and excellent adsorption properties of amine-crosslinked lignin suggest its promising potential for environmentally friendly and efficient removal of both cationic and anionic dyes, thereby offering a sustainable solution for wastewater treatment and remediation.
Collapse
Affiliation(s)
- Do Hun Oh
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Qian Xia
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
2
|
Yue Y, Yue X, Tang X, Han L, Wang J, Wang S, Du C. Synergistic adsorption and photocatalysis study of TiO 2 and activated carbon composite. Heliyon 2024; 10:e30817. [PMID: 38779020 PMCID: PMC11108842 DOI: 10.1016/j.heliyon.2024.e30817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The discharge of organic pollutants by the textile and dyeing industries presents an escalating threat to aquatic environments, necessitating the development of effective remediation strategies. This study introduces the utilization of graphite-like structured activated carbon (AC), derived from highland barley straw-a biomass unique to the Plateau regions of China, including Tibet, Qinghai, and Gansu-as a support material for the TiO2 catalyst. TiO2/AC composites with different TiO2 loadings were synthesized by ultrasonic impregnation. The TiO2/AC composites were found to be polycrystalline materials composed of anatase and rutile phases. The TiO2 nanoparticles are well-dispersed over the surface of the AC. The photocatalytic activity of these composites was evaluated through their capacity to degrade a methylene blue (MB) solution upon irradiation. It was observed that the inclusion of TiO2 increases the number of adsorption sites and active sites for methylene blue, with the photocatalytic activity being notably higher at a 3-wt% TiO2 loading, achieving a remarkable 99.6 % degradation efficiency for 100 mg/L MB within 100 min. The experimental kinetic data for the photocatalytic process follow the pseudo-first-order kinetic model. Furthermore, TiO2/AC retains high photocatalytic activity after five reaction cycles. This research provides valuable insights into the application of biomass-derived materials for the purification of water, offering a sustainable solution to both pollution and agricultural waste challenges in Plateau areas of China.
Collapse
Affiliation(s)
- Yihang Yue
- Key Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous Region, College of Science, Tibet University, Lhasa 850000, China
| | - Xiaoju Yue
- Key Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous Region, College of Science, Tibet University, Lhasa 850000, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiaofeng Tang
- Tibet Museum of Natural Science, Lhasa, 850000, China
| | - Lin Han
- Key Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous Region, College of Science, Tibet University, Lhasa 850000, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Jinnong Wang
- Key Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous Region, College of Science, Tibet University, Lhasa 850000, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Shifeng Wang
- Key Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous Region, College of Science, Tibet University, Lhasa 850000, China
- Fujian Quanzhou Peninsula Materials Co., Ltd, Quanzhou, 362000, China
- Aimoli (Hebei) Technology Co., Ltd, Shijiazhuang, 050000, China
| | - Chun Du
- Key Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous Region, College of Science, Tibet University, Lhasa 850000, China
| |
Collapse
|
3
|
Bibi M, Rashid J, Siddiqa A, Xu M. The mechanism and reaction kinetics of visible light active bismuth oxide deposited on titanium vanadium oxide for aqueous diclofenac photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23228-23246. [PMID: 38413524 DOI: 10.1007/s11356-024-32477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Non-uniform, non-spherical bismuth oxide deposited on titanium vanadium oxide (3%-BVT1) was successfully synthesized via co-precipitation method and assessed for visible light degradation of aqueous diclofenac. The synthesized photocatalysts were characterized using X-ray diffraction, diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. Up to 80.7% diclofenac degradation was observed with a significant increment in reaction rate compared to commercially available Degussa P25 (kapp = 0.0013 → 0.0083 min-1) achieved within 3 h treatment time under optimized parameters of diclofenac concentration (10 mg L-1), catalyst loading (0.1 g L-1), and pH (5). The enhanced photocatalysis could be due to electron-hole separation and contribution of powerful oxidative species •OH > O2•- > h+ > > e-. The recyclability experiments indicate that 3%-BVT1 retained its efficiency up to 74.1% over five reaction cycles. Gas chromatography-mass spectrometry analysis indicated the formation of several transformation products during the degradation pathway. The studies of interfering ions depicted mild interference by sulfates, while interference by phosphates and nitrates was negligible during photocatalytic process, i.e., 70, 78.01, and 78.43% for the selected concentrations of 50, 25, and 40 mg L-1 as per their maximum concentrations detected in the natural wastewaters. Thus, 3%-BVT1 is a potential versatile candidate to treat various organic pollutants including pharmaceuticals.
Collapse
Affiliation(s)
- Mehmooda Bibi
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Jamshaid Rashid
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Asima Siddiqa
- National Centre for Physics, Quaid-I-Azam University Complex, Islamabad, 45320, Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| |
Collapse
|
4
|
Ahmed MA, Mohamed AA. Advances in ultrasound-assisted synthesis of photocatalysts and sonophotocatalytic processes: A review. iScience 2024; 27:108583. [PMID: 38226158 PMCID: PMC10788205 DOI: 10.1016/j.isci.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Water pollution and the global energy crisis are two significant challenges that the world is facing today. Ultrasound-assisted synthesis offers a simple, versatile, and green synthetic tool for nanostructured materials that are often unavailable by traditional synthesis. Furthermore, the integration of ultrasound and photocatalysis has recently received considerable interest due to its potential for environmental remediation as a low-cost, efficient, and environmentally friendly technique. The underlying principles and mechanisms of sonophotocatalysis, including enhanced mass transfer, improved catalyst-pollutant interaction, and reactive species production have been discussed. Various organic pollutants as dyes, pharmaceuticals, pesticides, and emerging organic pollutants are targeted based on their improved sonophotocatalytic degradation efficiency. Additionally, the important factors affecting sonophotocatalytic processes and the advantages and challenges associated with these processes are discussed. Overall, this review provides a comprehensive understanding of sono-assisted synthesis and photocatalytic degradation of organic pollutants and prospects for progress in this field.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
5
|
Dey A, Korde S, Gogate PR, Agarkoti C. Sonochemical synthesis of Ce-TiO 2 nanocatalyst and subsequent application for treatment of real textile industry effluent. ULTRASONICS SONOCHEMISTRY 2023; 96:106426. [PMID: 37156159 DOI: 10.1016/j.ultsonch.2023.106426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Treatment of real textile industry effluent using photocatalysis, sonocatalysis, sonophotocatalysis and H2O2 assisted sonophotocatalysis have been studied based on the use of Ce-TiO2 nanocatalyst synthesized using sonochemical co-precipitation method. Characterization studies of the obtained catalyst revealed crystallite size as 1.44 nm with particles having spherical morphology. A shift of the absorption edge to the visible light range was also observed in UV-Vis diffuse reflectance spectra (UV-DRS) analysis. The effects of different operational parameters viz catalyst dose (0.5 g/L-2 g/L), temperature (30 °C-55 °C) and pH (3-12) on the COD reduction were studied. The reduction in the COD was higher at lower pH and the optimum temperature established was 45 °C. It was also elucidated that the required catalyst dose was lesser in combined sonophotocatalysis when compared with individual photocatalysis and sonocatalysis. Combination of processes and addition of oxidants increased the COD reduction with the sonophotocatalytic oxidation combined with H2O2 treatment showing the best results for COD reduction (84.75%). The highest reduction in COD for photocatalysis was only 45.09% and for sonocatalysis, it was marginally higher at 58.62%. The highest reduction in COD achieved by sonophotocatalysis was 64.41%. Toxicity tests coupled with Liquid Chromatography Mass Spectrometry (LC-MS) analysis revealed that there were no additional toxic intermediates added to the system during the treatment. Kinetic study allowed establishing that generalized kinetic model fits the experimental results well. Overall, the combined advanced oxidation processes showed better results than the individual processes with higher COD reduction and lower requirement of the catalyst.
Collapse
Affiliation(s)
- Ananya Dey
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India; NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, India
| | - Shrivatsa Korde
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| | - Chandrodai Agarkoti
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
6
|
Pirsaheb M, Moradi N, Hossini H. Sonochemical processes for antibiotics removal from water and wastewater: A systematic review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Jamaleddin Peighambardoust S, Camilla Boffito D, Foroutan R, Ramavandi B. Sono-photocatalytic activity of sea sediment@400/ZnO catalyst to remove cationic dyes from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Yu Z, Lv Y, Huang F, Zhang F, Shi Q, An K, Fan T, Li G, Wang J. Photoatalytic Degradation of Organic Pollutants in Water Under Visible Light by NH
2
‐MIL‐125(Ti‐Zr)@BiOCl
x
I
1‐
x
Composite Photocatalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202201958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhengming Yu
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Yunkai Lv
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Feng Huang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Fang Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Qi Shi
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Ke An
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Tingting Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 China
| | - Gang Li
- Baoding Green Yijia Environmental Protection Technology Ltd. Baoding 071002 China
| | - Jing Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province College of Chemistry and Environmental Science Hebei University Baoding 071002 China
- Baoding Green Yijia Environmental Protection Technology Ltd. Baoding 071002 China
| |
Collapse
|
9
|
Reddy BS, Maurya AK, Narayana PL, Pasha SKK, Reddy MR, Hatshan MR, Darwish NM, Kori SA, Cho KK, Reddy NS. Knowledge extraction of sonophotocatalytic treatment for acid blue 113 dye removal by artificial neural networks. ENVIRONMENTAL RESEARCH 2022; 204:112359. [PMID: 34774834 DOI: 10.1016/j.envres.2021.112359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Removing decolorizing acid blue 113 (AB113) dye from textile wastewater is challenging due to its high stability and resistance to removal. In this study, we used an artificial neural network (ANN) model to estimate the effect of five different variables on AB113 dye removal in the sonophotocatalytic process. The five variables considered were reaction time (5-25 min), pH (3-11), ZnO dosage (0.2-1.0 g/L), ultrasonic power (100-300 W/L), and persulphate dosage (0.2-3 mmol/L). The most effective model had a 5-7-1 architecture, with an average deviation of 0.44 and R2 of 0.99. A sensitivity analysis was used to analyze the impact of different process variables on removal efficiency and to identify the most effective variable settings for maximum dye removal. Then, an imaginary sonophotocatalytic system was created to measure the quantitative impact of other process parameters on AB113 dye removal. The optimum process parameters for maximum AB 113 removal were identified as 6.2 pH, 25 min reaction time, 300 W/L ultrasonic power, 1.0 g/L ZnO dosage, and 2.54 mmol/L persulfate dosage. The model created was able to identify trends in dye removal and can contribute to future experiments.
Collapse
Affiliation(s)
- B S Reddy
- Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, Jinju, 52828, South Korea
| | - A K Maurya
- Virtual Materials Lab, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, 52828, South Korea
| | - P L Narayana
- Virtual Materials Lab, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, 52828, South Korea
| | - S K Khadheer Pasha
- Department of Physics, Vellore Institute of Technology (Amaravati Campus), Amaravati, 522501, Guntur, Andhra Pradesh, India
| | - M R Reddy
- Computer Science and Engineering. Srinivasa Ramanujan Institute of Technology, Anantapur, 515701, India
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Noura M Darwish
- Faculty of Science Ain Shams University, Biochemistry Department, Abbasaya, P.O. Box., 11566, Cairo, Egypt; Ministry of Health Laboratories, Tanta, Egypt
| | - S A Kori
- Central University of Andra Pradesh (CUAP), Anantapuram, Andra Pradesh, 515002, India
| | - Kwon-Koo Cho
- Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, Jinju, 52828, South Korea
| | - N S Reddy
- Virtual Materials Lab, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
10
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
11
|
Zewde AA, Li Z, Zhang L, Odey EA, Xiaoqin Z. Utilisation of appropriately treated wastewater for some further beneficial purposes: a review of the disinfection method of treated wastewater using UV radiation technology. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:139-146. [PMID: 31743106 DOI: 10.1515/reveh-2019-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Due to world population growth, global climate change and the deteriorated quality of water, water supply struggles to keep up the clean water demand to meet human needs. Ultraviolet (UV) technology holds a great potential in advancing water and wastewater treatment to improve the efficiency of safe treatment. Over the last 20 years, the UV light disinfection industry has shown a tremendous growth. Therefore, reuse of wastewater contributes significantly to an efficient and sustainable water usage. Disinfection is a requirement for wastewater reuse due to the presence of a swarm of pathogens (e.g. bacteria, viruses, worms and protozoa) in secondary effluents. UV technology is widely favoured due to its environmentally friendly, chemical-free ability to provide high-log reductions of all known microorganisms, including chlorine-resistant strains such as Cryptosporidium. The UV disinfection process does not create disinfection by-products and unlike the chlorine UV disinfection process, it is not reliant on water temperature and pH. UV disinfection can eliminate the need to generate, handle, transport or store toxic/hazardous or corrosive chemicals and requires less space than other methods. As UV does not leave any residual effect that can be harmful to humans or aquatic life, it is safer for plant operators.
Collapse
Affiliation(s)
- Abraham Amenay Zewde
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan 30, Beijing 10003, P.R. China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, P.R. China
| | - Lingling Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, P.R. China
| | - Emanuel Alepu Odey
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, P.R. China
| | - Zhou Xiaoqin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, P.R. China
| |
Collapse
|
12
|
Asgari G, Shabanloo A, Salari M, Eslami F. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network. ENVIRONMENTAL RESEARCH 2020; 184:109367. [PMID: 32199323 DOI: 10.1016/j.envres.2020.109367] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
The present study investigates the synergistic performance of the sonophotolytic-activated ZnO/persulfate (US/UV/ZnO/PS) process in the decolorization of acid blue 113 (AB113) dye from aqueous solution and its feasibility for the treatment of real textile wastewater. Decolorization of AB113 solution was modeled by central composite design-response surface methodology (CCD-RSM) and artificial neural network (ANN) approaches and optimized by CCD-RSM and genetic algorithm (GA) approaches. Statistical metrics indicated that both CCD-RSM and ANN approaches seemed satisfactory. However, the results of statistical fit measures indicated a relative superiority of CCD-RSM as compared to the ANN approach. The results of optimization of the process parameters by CCD-RSM and GA approaches appeared to be similar as follows: pH = 6.1, reaction time = 25 min, US power density = 300 W/L, ZnO = 0.88 g/L and PS = 2.43 mmol/L. The synergistic effect of the hybrid US/UV/ZnO/PS process in comparison with its individual processes (US, UV, ZnO, and PS) was found to be 54.3%. Quenching experiments discovered that and HO are the main oxidizing radicals in a mildly acidic condition of the reaction solution. The removal efficiency of AB113 in the presence of some anions decreased in the order of bicarbonate > sulfate > phosphate > nitrate > chloride. Further, the reusability feasibility of ZnO showed that the ZnO material retained its photocatalytic property after five successive cycles of reusability test, while Zn2+ ion concentration in the reaction solution was measured to be 2.81 mg/L. The findings also indicated that the integrated process application suppresses extremely chemical and electrical costs. The study of the feasibility of the US/UV/ZnO/PS process in the treatment of real textile wastewater was done by determining COD, TOC and BOD5/COD ratio. Results demonstrated that the 96.6 and 97.1% reduction of COD and TOC was achieved after 5 and 7 h reaction time, respectively. The obtained BOD5/COD ratio changed from about 0.15 (for non-treated wastewater) to about 0.61 with increasing reaction time from zero to 90 min. In conclusion, the hybrid US/UV/ZnO/PS system can be proposed as a novel and promising approach to be utilized as a pretreatment technique before a biological treatment process to facilitate the biological treatment of recalcitrant textile wastewater.
Collapse
Affiliation(s)
- Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Amir Shabanloo
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Mehdi Salari
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran.
| | - Fatemeh Eslami
- Department of Environmental Health Engineering, School of Public Health, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
13
|
Biogenic Silver Nanoparticles/Hydrogen Peroxide/Ozone: Efficient Degradation of Reactive Blue 19. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00695-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|